
Journal of Information Security and Applications 60 (2021) 102869

Available online 19 May 2021
2214-2126/© 2021 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

Collusion resistant secret sharing scheme for secure data storage and
processing over cloud
Lakshmi V.S.1, ∗, Deepthi S.2, Deepthi P.P.
Department of Electronics and Communication Engineering, National Institute of Technology Calicut, Kerala, India

A R T I C L E I N F O

Keywords:
Data security
Cloud computing
Privacy preserving
Secret sharing
Homomorphic computation

A B S T R A C T

Shamir secret sharing (SSS) is considered as a promising method for outsourcing the data securely due to
its ability to support privacy preserving data processing while ensuring data availability. Major drawbacks of
original SSS scheme are its susceptibility to collusion attack and high storage overhead. Hence in this paper,
we first propose a modified SSS scheme (MSSS) which can resist collusion attack and provide adequate security
even with two shares. However, the storage overhead of this scheme is high when it is extended to ensure
data availability and integrity in cloud storage systems. Therefore, a modified ramp secret sharing (MRSS) with
reduced storage overhead compared to MSSS scheme is also proposed in this paper. The proposed schemes can
be employed for any privacy preserving data processing application which involve linear operations on the
data. In this paper, in order to demonstrate the capability of proposed schemes to support privacy preserving
data processing, Haar discrete wavelet transform (DWT) computation on medical images is considered as an
example as DWT is widely used in feature extraction for disease diagnosis from pathological images. We
present an algorithm for computing Haar DWT from medical image shares. The security of the proposed
scheme is evaluated through mathematical cryptanalysis and resistance against various statistical attacks. The
performance analysis shows that shared domain DWT offers same accuracy levels as that of plaintext domain.

1. Introduction

The advancements in cloud storage and computing paradigm has
attracted various sectors due to the exponential growth in the data
generation rate. Although cloud computing platform relieves its users
from the burden of storage and processing cost, it also introduces sev-
eral security threats such as availability, integrity and confidentiality
[1–3]. In order to resolve the availability issue, cloud systems usually
rely on distributed storage architecture, where the data is striped and
stored redundantly among multiple servers using techniques such as
replication and erasure codes [4,5]. On the other hand, detection of
tampering of data and identification of corrupted servers are often
achieved through integrity verification schemes which demands the
storage of authentication tags along with the outsourced data [6]. Also,
it is essential to ensure data privacy or confidentiality especially while
outsourcing data of highly sensitive nature for storage and process-
ing [7–10]. Even though traditional encryption schemes like advanced
encryption standard (AES) provide data confidentiality, it will not
support encrypted domain processing [11]. In order to facilitate oper-
ations in the encrypted domain (ED), the encryption scheme should be
homomorphic to the computations performed on encrypted data [12].

∗ Corresponding author.
E-mail address: lakshmivs23@gmail.com (Lakshmi V.S.).

1 Department of Electronics and Communication Engineering, Sree Chitra Thirunal College of Engineering, Trivandrum, Kerala, India.
2 Wipro GE Healthcare Pvt. Ltd., Bangalore, India.

Majority of the cloud processing tasks involve only linear operations
and an additive homomorphic encryption scheme (HES) is sufficient for
encrypting the data to be outsourced in such applications [13]. The
most popular additive HES available in literature is Paillier scheme
[14,15]. However, the major disadvantage of the Paillier scheme is
high computational complexity due to exponentiation operations over
large finite field [16]. Shamir secret sharing (SSS) [17,18] scheme has
proved to be an effective additive homomorphic scheme, especially in
privacy preserving data processing. Moreover, SSS has less computa-
tional complexity due to linear operations involved in generation and
reconstruction of shares.

(𝑡, 𝑛) SSS is a threshold based scheme in which 𝑛 shares, generated
from a secret, are distributed among 𝑛 cloud service providers (CSP)
and only 𝑡 shares (𝑡 ≤ 𝑛) are needed for reconstruction of the secret.
Since size of each share is same as the size of the secret, the storage
overhead increases with the number of shares being stored. However,
SSS can provide data confidentiality, integrity and availability simulta-
neously with this storage overhead whereas Paillier scheme provides
only data confidentiality. (𝑡, 𝑛) SSS ensures data availability as the

https://doi.org/10.1016/j.jisa.2021.102869

http://www.elsevier.com/locate/jisa
http://www.elsevier.com/locate/jisa
mailto:lakshmivs23@gmail.com
https://doi.org/10.1016/j.jisa.2021.102869
https://doi.org/10.1016/j.jisa.2021.102869
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2021.102869&domain=pdf

Journal of Information Security and Applications 60 (2021) 102869

2

Lakshmi V.S. et al.

secret can be reconstructed from any 𝑡 out of 𝑛 shares. Similarly, SSS
provide data integrity verification by reconstructing the secret from two
different sets of shares. Furthermore, SSS offers information theoretic
security, which means that an adversary having infinite computational
power cannot obtain any information about the secret even if he knows
(𝑡 - 1) shares [17].

1.1. Related works

In this section, we briefly discuss the various secret sharing based
schemes and their applications in homomorphic processing. Secret
sharing was first introduced by Shamir [17] and Blakely [19] in-
dependently for safe management of cryptographic keys. Shamir (𝑡,
𝑛) threshold secret sharing scheme is based on Lagrange polynomial
interpolation whereas Blakley′s scheme is based on projective spaces.
Both these schemes are perfect [20] as no information is leaked even
if (𝑡 -1) participants try to retrieve the secret. These schemes are also
ideal [21] since the information rate, which is the ratio of the size
of the secrets to the size of shares is 1. This implies that the share
size is same as secret. In order to reduce the computational complexity
involved in reconstructing the secret, threshold schemes based on the
Chinese Remainder Theorem (CRT) were proposed by Mignotte [22]
and Asmuth-Bloom [23]. The problem with these schemes is the in-
formation leakage during collusion of 𝑡 -1 participants depends on
the parameters of the scheme and they are non-ideal. But Goldreich
et al. [24] showed that if the parameters are consecutive primes, the
security of threshold secret sharing schemes based on CRT can be
improved. As an improvement of this result, Quisquater et al. [25]
proved that these CRT based schemes can be made asymptotically
ideal and perfect if the secret is uniformly chosen and parameters
are consecutive primes. However, it is difficult to construct threshold
schemes based on CRT since it requires a series of pairwise coprime
integers satisfying some stringent conditions. Therefore, we focus on
Shamir secret sharing (SSS) due to the simplicity in generating shares.

A major issue of SSS scheme is that it is inefficient for storage or
processing of voluminous data, as there is a data expansion in the
process. Krawczyk [26] introduced ramp scheme with shorter share
size by relaxing the information theoretic secrecy conditions. In this
scheme, the secret to be shared is first encrypted using a length pre-
serving encryption scheme such as AES. Then, this encrypted secret is
divided into 𝑛 fragments using Rabin′s information dispersal algorithm.
Then the 𝑛 shares of encryption key are generated using a perfect
secret sharing scheme. The share given to each of the 𝑛 participants
includes the encrypted fragment and its key share. The security of
this ramp scheme relies on computational secrecy which means that
no computational information can be gained by resource bounded
adversaries. The security of this scheme completely depends on the
security of encryption and no security is embedded in the information
dispersal algorithm. As the key shares are also given to the participants,
this scheme cannot be used for privacy preserving cloud computing
applications since there is chance of collusion by threshold number of
cloud servers. Moreover, since the secret is encrypted with AES before
share generation, this scheme cannot be directly used in applications re-
quiring homomorphic processing. This is due to the fact AES encryption
spoils the homomorphic property of information dispersal algorithm.

The homomorphic property of SSS [18] is widely used for secure
multi party computation (MPC) [27] and various privacy preserving
computing applications. A secure MPC framework, Sharemind which
utilizes SSS scheme to split the data among three participants is pro-
posed in [28]. Many privacy preserving computing applications such as
data mining [29], financial data analysis [30] are proposed based on
the protocols for various operations available in Sharemind framework.
Another computing library for secure MPC based on SSS scheme, known
as SEPIA is proposed in [31] for privacy preserving data aggregation for
network security. Algorithms for executing different privacy-preserving
SQL queries over the data outsourced using SSS scheme is proposed

in [32]. However, all these works are based on the assumption that the
number of collaborating participants will be less than the threshold.

Many privacy preserving data processing applications over cloud
based on secret sharing schemes have also been introduced in recent
years. SSS based image denoising over cloud is proposed in [33],
but it can support only integer subtraction and addition operations.
A pre-processing method is introduced in [34] through which real
number addition/scalar multiplication can be done in shared domain
(SD). However, this work allows multiplication/division operation with
terminating decimals only. A solution to support arithmetic division
operations for nonterminating decimals on the image shares is provided
in [35]. All these works [33–35] are aimed at low-level image enhance-
ment tasks such as denoising, anti-aliasing and contrast enhancement
in SD over cloud, which involves a 3 × 3 mean filtering operation.
A secure data deduplication scheme over cloud which relies on CRT
based secret sharing with is proposed in [36]. This scheme makes use of
authentication codes to verify the integrity of data prior to downloading
the outsourced data. A reversible data hiding scheme [37] is proposed
in which the secret data to claim the ownership is embedded into the
image shares generated using CRT based scheme before outsourcing
to cloud. An image tampering detection and recovery scheme which
relies on secret sharing based on permutation ordered binary (POB)
number system is proposed in [38]. In this scheme, the detection and
recovery watermarks are embedded into the shares before outsourcing.
The problem with all these works based on secret sharing is that the
security relies on the assumption that threshold number of participants
will not collude.

1.2. Motivation and contributions

Based on the literature mentioned in the related works section, the
different cloud computing applications which employ shared domain
processing are secure data aggregation, querying, data mining, mul-
timedia processing etc which involve only linear operations on the
data. As SSS possess additive homomorphism, it can be adopted in
any application which demand linear operations in shared domain. The
main drawbacks of SSS scheme are (1) huge storage overhead due to the
need for storage of 𝑛 shares in 𝑛 CSPs; and (2) vulnerability to collusion
attack. The security of the privacy preserving processing methods based
on SSS assumes that more than (𝑡 - 1) CSPs will not collude. However,
SSS cannot guarantee information-theoretic security if at least 𝑡 CSPs
collude. This is due to the fact that when we extend the application
of secret sharing schemes for distributed storage, it is highly probable
that the third party servers (CSPs) holding the shares collude. Then
the (𝑡, 𝑛) secret sharing scheme fails to ensure data secrecy if 𝑡 servers
holding shares collude. Therefore in this scenario, we need to ensure
that only the authorized entities will be able to reconstruct the secret
data by combining 𝑡 shares stored in CSPs whereas the third party CSPs
will not be able to retrieve the secret data through collusion. Hence,
we modified SSS scheme to tackle the issues of both storage overhead
and collusion attack in such a way that only two shares need to be
outsourced to provide adequate security.

But the adoption of the modified SSS scheme to outsource volumet-
ric data such as multimedia data or medical images will be inefficient
in terms of storage and communication since the size of each share
in the modified SSS scheme is same as that of secret. Therefore, we
also propose a modified ramp secret sharing (MRSS) scheme resistant
to collusion attack in order to resolve the storage overhead issue while
outsourcing volumetric data. Even though the proposed schemes can
be used for any secure domain data processing application which
involve linear operations, in this paper DWT computation for image
data is chosen as the typical application to validate the efficiency of
the proposed schemes in privacy preserving data processing due to the
wide applicability of DWT in feature extraction, fusion etc. for disease
diagnosis from pathological images. The major contributions of this
paper are as follows.

Journal of Information Security and Applications 60 (2021) 102869

3

Lakshmi V.S. et al.

1. A modified Shamir secret sharing (MSSS) scheme is proposed
to resist collusion attacks. The proposed MSSS scheme provides
security against collusion attacks through encrypting the secret
before share generation and hiding the index used to generate
the shares from the CSP.

(a) Hiding the index prevents the CSPs from reconstructing
the secret using shares during collusion.

(b) Encrypting the secret before share generation prevents
the adversary from mounting the known-plaintext attack
during collusion.

(c) The encryption is done by blinding the secret with ran-
dom numbers generated from keystream of linear feed-
back shift register (LFSR) in order to preserve the homo-
morphic properties of the secret sharing scheme. Different
random numbers needed to blind secret are generated
through a design based on LFSRs.

2. Even though only two shares are needed in the proposed MSSS
scheme, data availability and data integrity can be provided by
extending it to a (𝑡, 𝑛) scheme. The (𝑡, 𝑛) MSSS scheme ensures
data availability as long as any 𝑡 out of 𝑛 CSPs are available.
It can also ensure data integrity and detect tampering of data
together with identity of the tampered server if the number of
servers corrupted is limited to 𝑛 − 𝑡 − 1.

3. A modified ramp secret sharing scheme (MRSS) scheme is also
proposed to reduce the storage overhead further without sacri-
ficing the data processing capability and security.

4. Privacy preserving DWT computation on images using Haar
wavelet is designed based on proposed schemes.

5. The security of the proposed schemes is analyzed through math-
ematical cryptanalysis and ability to resist different statistical
attacks.

6. The performance evaluation of the proposed shared domain
(SD) DWT computation is done by qualitative and quantitative
analysis of the SD results in comparison with those in plaintext
domain (PD).

The rest of the paper is organized as follows. In the next section,
we describe the system model and adversary model. Section 3 and
Section 4 present the proposed MSSS and MRSS schemes respectively.
The integrity verification of reconstructed data based on proposed
schemes is detailed in Section 5 and the steps in privacy preserving
image decomposition is explained in Section 6. The security analysis
is discussed in Section 7 and the performance evaluation of the SD
image decomposition and comparison with related schemes is detailed
in Section 8, followed by concluding remarks in Section 9.

2. System model and adversary model

We now describe the system model and adversary model for pri-
vacy preserving image processing over cloud based on SSS as the SD
operation considered is image decomposition.

2.1. System model

The system model for the secure domain storage and image pro-
cessing based on (𝑡, 𝑛) SSS is shown in Fig. 1, where the obfuscated
shares of original images are distributed among 𝑛 different CSPs, who
perform the required image processing operations on their correspond-
ing shares. The authorized entity can reconstruct the final processed
image by retrieving processed image shares from any of the 𝑡 CSPs.
The data availability can be ensured if any 𝑡 out of 𝑛 CSPs are available.
Similarly, integrity of the stored and processed data can be verified as
long as any 𝑡 + 1 out of 𝑛 CSPs are not corrupted.

2.2. Adversary model

This work considers both passive adversaries and active adversaries.
Passive adversary can eavesdrop on the data stored in any of the CSPs
or cloud servers. Whereas, it is assumed that the active adversaries
can corrupt data only in atmost 𝑛 − 𝑡 − 1 out of 𝑛 cloud servers since
shares from at least 𝑡+ 1 servers are required for integrity verification.
The cloud servers are considered as semi trusted which implies that
they execute the storage and processing tasks properly. However, they
may be curious to know the stored data. The adversary can also try
to mount known-plaintext attack (KPA) as he may possess knowledge
of some plaintext based on the nature of stored data. Chosen plaintext
attack (CPA) is not considered as a valid attack in this scenario, as it
is impossible for the adversary to have access to the client encrypting
machine which may be geographically separated from the cloud storage
servers.

3. Proposed modified Shamir secret sharing scheme

In original SSS, the shares corresponding to a secret are generated
through polynomial evaluation and the secret can be reconstructed
from threshold number of shares through Lagrange interpolation. Here
the secret, polynomial coefficients and the indices used to generate
shares are elements of finite field, 𝐹𝑝. The details of share genera-
tion, secret reconstruction and homomorphic properties are as follows.
Table 1 list the primary notations used in our scheme.

3.1. Original Shamir secret sharing scheme

3.1.1. Share generation
In (𝑡, 𝑛) SSS, the 𝑛 shares corresponding to the secret, 𝑠1 (data to be

shared) are generated through evaluating a polynomial of degree 𝑡 − 1
as shown in Eq. (1).

𝑓 (𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯ + 𝑎𝑡−1𝑥

𝑡−1(𝑚𝑜𝑑 𝑝) (1)

The share of the 𝑗th participant, 𝑓 (𝑥𝑗), 1 ≤ 𝑗 ≤ 𝑛 corresponding to
secret, 𝑠1 is obtained by evaluating the polynomial, 𝑓 (𝑥) with constant
term, 𝑎0 = 𝑠1 and index, 𝑥𝑗 ∈ 𝐹𝑝 as shown in Eq. (2).

𝑓 (𝑥𝑗) = 𝑠1 + 𝑎1𝑥𝑗 + 𝑎2𝑥
2
𝑗 +⋯ + 𝑎𝑡−1𝑥

𝑡−1
𝑗 (𝑚𝑜𝑑 𝑝) (2)

The index 𝑥𝑗 is chosen in such a way that 𝑥𝑛 > 𝑥𝑛−1 > ⋯ > 𝑥2 > 𝑥1.
The coefficients 𝑎𝑘, 1 ≤ 𝑘 ≤ 𝑡 − 1 of the polynomial are randomly
chosen from a uniform distribution over the integers modulo 𝑝, where
𝑝 is prime.

3.1.2. Secret reconstruction
The secret shared among the different participants can be recon-

structed from any 𝑡 out of 𝑛 shares through Lagrange interpolation.
The idea is to construct a set of 𝑡 polynomials known as Lagrange base
polynomials, 𝛾𝑗 (𝑥), 1 ≤ 𝑗 ≤ 𝑡 such that

𝛾𝑗 (𝑥𝑖) =
{

0, 𝑖 = 𝑗
1, 𝑖 ≠ 𝑗

(3)

These Lagrange base polynomials, 𝛾𝑗 (𝑥) can be easily constructed by
placing the roots appropriately and then normalizing the result such
that 𝛾𝑗 (𝑥𝑗) = 1. Thus, the expression for 𝛾𝑗 (𝑥) can be written as,

𝛾𝑗 (𝑥) =
𝑡

∏

𝑘=1,𝑘≠𝑗

(𝑥 − 𝑥𝑘)
(𝑥𝑗 − 𝑥𝑘)

(4)

Then the final interpolating polynomial, 𝑓 (𝑥) can be expressed as
the weighted sum of the Lagrange polynomials, 𝛾𝑗 (𝑥), where share
values, 𝑓 (𝑥𝑗) form the corresponding weights as shown in Eq. (5).

𝑓 (𝑥) =
𝑡

∑

𝑗=1
𝑓 (𝑥𝑗).𝛾𝑗 (𝑥) (5)

Journal of Information Security and Applications 60 (2021) 102869

4

Lakshmi V.S. et al.

Fig. 1. Proposed Scheme for shared domain storage and image processing.

Table 1
Notations in our scheme.

Notation Description

𝐹𝑝 Finite field of size 𝑝
𝑡 Threshold no. of shares in (𝑡, 𝑛) SSS
𝑛 Total no. of shares in (𝑡, 𝑛) SSS
𝑠𝑖 𝑖th secret data in MSSS scheme
𝑓 (𝑥) Polynomial used for share generation
𝑥𝑗 Indices used to generate shares by evaluating 𝑓 (𝑥)
𝛾𝑗 Lagrange coefficient of 𝑗th share needed to reconstruct secret
𝑦𝑖𝑗 𝑗th share of secret 𝑠𝑖
𝐿 Length of LFSR
𝑞(𝑧) Feedback polynomial of LFSR
𝑘1 Initial state or secret key of LFSR1
𝛽1 Initial state of LFSR2 used to derive random multiplier
𝑟𝑖𝑗 𝑗th random number from 𝑖th linearly independent LFSR keystream
𝑠𝑖𝑗 𝑗th secret data in the 𝑖th secret vector in MRSS scheme
�̃�𝑖𝑗 Blinded secret data corresponding to 𝑠𝑖𝑗
�̃�𝑟 Blinded reconstructed data vector
𝑘′ No. of corrupted servers
𝑁𝑐 No. of possible combinations of 𝑡 servers generating corrupted data
𝑍′

𝑖 List of indices of 𝑡 servers with
(𝑛
𝑡

)

entries
𝑍𝑖 List of indices of 𝑡 servers from 𝑍′

𝑖 which gives same �̃�𝑟
𝑖𝑐 Indices of corrupted servers

In original SSS scheme, as the secret, 𝑠1 is the constant term of
the polynomial, it can be reconstructed by evaluating the Eq. (5) with
𝑥 = 0. Thus, the secret, 𝑠1 = 𝑓 (0) reconstructed from any 𝑡 out of 𝑛
shares through Lagrange interpolation is as shown in Eq. (6).

𝑠1 =
𝑡

∑

𝑗=1
𝑓 (𝑥𝑗) ⋅ 𝛾𝑗 (0)

=
𝑡

∑

𝑗=1
𝑓 (𝑥𝑗) ⋅

𝑡
∏

𝑘=1,𝑘≠𝑗

𝑥𝑘
(𝑥𝑘 − 𝑥𝑗)

(𝑚𝑜𝑑 𝑝) (6)

3.1.3. Homomorphic property
SSS supports additivity and homogeneity properties which are the

requirements of an additive HES. Let 𝑠1, 𝑠2 ∈ 𝐹𝑝 be two secrets to be
shared using SSS and [𝑠1]𝑡𝑗 , [𝑠2]

𝑡
𝑗 be the corresponding shares. Then the

homomorphic properties can be defined as,

[𝑠1]𝑡𝑗 + [𝑠2]𝑡𝑗 =

[

𝑠1 +
𝑡−1
∑

𝑘=1
𝑎𝑘 ∗ 𝑥𝑘𝑗 (𝑚𝑜𝑑 𝑝)

]

+

[

𝑠2 +
𝑡−1
∑

𝑘=1
𝑏𝑘 ∗ 𝑥𝑘𝑗 (𝑚𝑜𝑑 𝑝)

]

=

[

(𝑠1 + 𝑠2) +
𝑡−1
∑

𝑘=1
𝑐𝑘 ∗ 𝑥𝑘𝑗 (𝑚𝑜𝑑 𝑝)

]

= [𝑠1 + 𝑠2]𝑡𝑗 (7)

𝛼 ⋅ [𝑠1]𝑡𝑗 = 𝛼 ⋅

[

𝑠1 +
𝑡−1
∑

𝑘=1
𝑎𝑘 ∗ 𝑥𝑘𝑗 (𝑚𝑜𝑑 𝑝)

]

=

[

𝛼𝑠1 +
𝑡−1
∑

𝑘=1
𝑑𝑘 ∗ 𝑥𝑘𝑗 (𝑚𝑜𝑑 𝑝)

]

= [𝛼𝑠1]𝑡𝑗 (8)

where 𝛼 ∈ 𝐹𝑝 is a scalar. Here 𝑐𝑘 = 𝑎𝑘 + 𝑏𝑘 and 𝑑𝑘 = 𝛼𝑎𝑘 represent
two different random coefficients in 𝐹𝑝 resulting from the addition and
scalar multiplication of random coefficients respectively. Eqs. (7) and
(8) indicate that the reconstruction of the linear combination of the
secret shares yields the same value as that obtained by computing the
linear combination on the original secrets. This is due to the fact that
the reconstruction of the secret shares does not depend on the random
coefficients and it depends only on the indices used to generate the
shares as shown in the Lagrange interpolation formula (Eq. (6)).

In original (𝑡, 𝑛) SSS, both the share 𝑓 (𝑥𝑗) and the associated
index, 𝑥𝑗 are sent to the participant (CSP). SSS provides information
theoretic security since each share of the secret is stored in different
CSP. However, if any of the 𝑡 CSPs collude, the secret will be revealed.
Hence, the major problem with the SSS is its susceptibility to collusion
attack. In this paper, we have modified the SSS scheme as given in the
following section so as to resist collusion attack.

3.2. Design of modified Shamir secret sharing scheme

In original (𝑡, 𝑛) SSS scheme, the data owner generates the 𝑛 shares,
𝑓 (𝑥𝑗), 1 ≤ 𝑗 ≤ 𝑛 of secret data using indices 𝑥𝑗 . Then the 𝑛 shares,
𝑓 (𝑥𝑗), 1 ≤ 𝑗 ≤ 𝑛 and its corresponding index, 𝑥𝑗 are outsourced
to 𝑛 different cloud service providers (CSPs) so that the secret data
can be reconstructed by retrieving shares from any of the 𝑡 CSPs.
However, the secret shared among different CSPs using original (𝑡, 𝑛)
SSS scheme can be retrieved through collusion of 𝑡 CSPs using Lagrange
interpolation formula given in Eq. (6). To perform this, each CSP, say
𝑗 should know its share, 𝑓 (𝑥𝑗) and the corresponding index, 𝑥𝑗 . Hence
in order to prevent this collusion attack, we propose to hide the index
from the CSPs. The secret indices are distributed only among the data
owners through key exchange schemes or by encrypting the keys and
communicating them prior to data sharing. Therefore the index, 𝑥𝑗
acts as key for the modified SSS. This will not affect the homomorphic
processing since the homomorphic operations are carried out only on
the shares. The indices are required only during the reconstruction
of secret data which is performed by the data owner or any other
authorized entity by retrieving processed data shares from any of the 𝑡

Journal of Information Security and Applications 60 (2021) 102869

5

Lakshmi V.S. et al.

CSPs as shown in Fig. 1. However, the adversary can mount a known-
plaintext attack (KPA) during collusion mentioned in [39] even if the
index is kept secret. The details of this KPA through collusion [39] if
any 𝑡 secrets and their shares are known to the adversary is described
below.

Let 𝑦𝑖𝑗 = 𝑓 (𝑥𝑗) represents the 𝑗th share of secret, 𝑠𝑖. If the adversary
knows 𝑡 secrets, 𝑠𝑖, 1 ≤ 𝑖 ≤ 𝑡 and their corresponding shares, 𝑦𝑖𝑗 , 1 ≤ 𝑗 ≤ 𝑡
then he can find the Lagrange base polynomial, 𝛾𝑗 (= 𝛾𝑗 (0)) by solving
the following set of equations [39].

𝑦11𝛾1 + 𝑦12𝛾2 +⋯ + 𝑦1𝑡𝛾𝑡 − 𝑠1 ≡ 0 (𝑚𝑜𝑑 𝑝)

𝑦21𝛾1 + 𝑦22𝛾2 +⋯ + 𝑦2𝑡𝛾𝑡 − 𝑠2 ≡ 0 (𝑚𝑜𝑑 𝑝)

⋮

𝑦𝑡1𝛾1 + 𝑦𝑡2𝛾2 +⋯ + 𝑦𝑡𝑡𝛾𝑡 − 𝑠𝑡 ≡ 0 (𝑚𝑜𝑑 𝑝) (9)

Once the adversary obtains the Lagrange bases 𝛾1, 𝛾2,… , 𝛾𝑡, he can
use this to retrieve other secrets shared among the colluding CSPs. To
prevent this collusion and to further enhance the security of SSS, we
propose the following modifications to SSS.

In order to prevent the adversary from retrieving the Lagrange bases
𝛾1, 𝛾2,… , 𝛾𝑡 by solving the above set of equations, it is required to
encrypt the secret before share generation. However, encrypting the se-
cret using complex encryption scheme eliminates the inherent additive
homomorphism provided by the SSS as traditional encryption schemes
cannot support encrypted domain processing. Hence, we propose to
encrypt the secret by adding it to random numbers generated through
a key. Thus, after blinding the secrets, the above set of equations can
be rewritten as,

𝑦11𝛾1 + 𝑦12𝛾2 +⋯ + 𝑦1𝑡𝛾𝑡 − (𝑠1 + 𝑟1) ≡ 0 (𝑚𝑜𝑑 𝑝)

𝑦21𝛾1 + 𝑦22𝛾2 +⋯ + 𝑦2𝑡𝛾𝑡 − (𝑠2 + 𝑟2) ≡ 0 (𝑚𝑜𝑑 𝑝)

⋮

𝑦𝑡1𝛾1 + 𝑦𝑡2𝛾2 +⋯ + 𝑦𝑡𝑡𝛾𝑡 − (𝑠𝑡 + 𝑟𝑡) ≡ 0 (𝑚𝑜𝑑 𝑝) (10)

where 𝑟1, 𝑟2,… , 𝑟𝑡 are the random numbers added to the 𝑡 secrets.
Blinding the secret can prevent 𝑡 colluding CSPs from retrieving 𝛾𝑗 by
solving the set of 𝑡 equations, since it consists of 2𝑡 unknowns as given
in Eq. (10).

Now, in order to ensure that the secrecy offered by random num-
bers is not spoiled during processing operation on shares, the method
for generation of random numbers need to be developed through a
careful design. The exact design methodology depends upon the data
processing operation required to be performed in SD. Following section
discusses the design requirements to be considered in random number
generation for linear operations in SD.

3.3. Design of random numbers

The random number generator needs to be designed carefully to
ensure that the randomness and security properties of random numbers
are preserved in the homomorphically combined shares. Moreover, it
is desirable to develop the method for generation of random numbers
with very low complexity of operations as blinding needs to be per-
formed at the client side. Linear feedback shift register (LFSR) based
keystreams are good candidates due to their good statistical proper-
ties and low structural complexity [40]. Further, the LFSR keystream
possess homomorphic properties required to provide additive homo-
morphism during SD processing. This implies that linear combinations
of keystreams should yield another keystream with the same random-
ness properties, which is established through Theorem 1. The secret key
of the LFSR is formed by the initial state, 𝑘(𝑧) and feedback polynomial,
𝑞(𝑧) that determines the feedback connections.

Theorem 1. The LFSR keystreams satisfy additivity and homogeneity
properties.

Additivity property –The addition of the LFSR keystreams will produce
a new keystream, generated from an initial state which corresponds to the
sum of initial states of individual keystreams.

Homogeneity property –The scalar multiplication of an LFSR keystream
will produce a new keystream, generated from an initial state which corre-
sponds to the scalar multiple of the initial state of original keystream.

Proof. See Appendix A □

But due to the linearity property of LFSR keystream, the linear
combination during SD computation may result in null keystream. This
can be prevented through employing symbols from linearly indepen-
dent keystreams for blinding the secrets to be linearly combined. From
Theorem 1, it is clear that the linearly independent LFSR initial states
generate linearly independent keystreams. But an LFSR of length 𝐿
can generate only 𝐿 linearly independent initial states since every
state of this LFSR is an 𝐿-dimensional vector in the vector space
𝑊 over 𝐹𝑝. We also propose a method for deriving the 𝐿 linearly
independent initial states from an initial secret key, 𝑘 = 𝑘0, 𝑘1,… , 𝑘𝐿−1
through cyclic shifting operation. The conditions required to generate
𝐿 linearly independent keystreams from initial key, 𝑘 is established
through Theorem 2.

Theorem 2. The set of 𝐿 initial states of an LFSR of length 𝐿 derived
through cyclic shift of the initial secret key 𝑘(𝑧) will be linearly independent,
if gcd (𝑘(𝑧), 𝑧𝐿 − 1) forms a polynomial of zero degree.

Proof. See Appendix B □

If LFSR initial states used for generating linearly independent
keystreams are computed from the initial secret key through simple
linear shifting operations, it may lead to security leakage. This is due
to the fact that all the keystreams used for blinding the image will be
simply the shifted versions of one keystream. Therefore, to strengthen
the security, the initial state required for producing the linearly inde-
pendent keystreams are generated through the cyclic shift of previous
initial states followed by multiplication by a random number from 𝐹𝑝.
Thus, security leakage can be prevented while retaining randomness
properties and linear independence.

Algorithm 1 details the steps for generating linearly independent
keystreams required to obtain the random numbers used to blind the
secrets, whose shares are to be processed in the cloud. 𝑀 linearly
independent keystreams, 𝑟𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ (𝑝𝐿 − 1) are generated
as the output of this algorithm, where 𝑀 is the number of secrets that
are linearly combined during SD computation. Two LFSRs are used
for generating the required keystreams, in which LFSR1 generates the
keystream used for creating random numbers whereas LFSR2 derives
the random multiplier needed for updating the states of LFSR1. The
inputs to the algorithm are initial state or key of LFSR1, 𝑘1; feedback
polynomial, 𝑞(𝑧); and initial key, 𝛽1 of LFSR2 needed to derive ran-
dom multiplier 𝛽𝑖. Here LFSR1-PRNG refers to the LFSR based pseudo
random number generator which generates 𝑀 keystreams from the
initial state, 𝑘1 and feedback polynomial, 𝑞(𝑧). LFSR2-STATE UPDATE
indicates the updation of initial state, 𝛽1 of LFSR2, which generates a
single random symbol as output. In the algorithm, 𝐷𝑅𝑖(𝑘1) denotes that
the initial state, 𝑘1 is right shifted by 𝑖 bits.

3.3.1. Keyspace
The secret keys of the proposed MSSS scheme consists of initial state

of LFSR1, 𝑘1; feedback polynomial, 𝑞(𝑧); initial key of multiplier, 𝛽1 and
𝑛 indices, 𝑥𝑗 , 1 ≤ 𝑗 ≤ 𝑛 used to generate 𝑛 shares.

Journal of Information Security and Applications 60 (2021) 102869

6

Lakshmi V.S. et al.

Algorithm 1 For generating linearly independent keystreams
Input: 𝑘1, 𝛽1, 𝑞(𝑧)
Output: 𝑟𝑖𝑗

1: for 𝑖 = 1 ∶ 𝑀 do
2: 𝑟𝑖𝑗 = LFSR1-PRNG(𝑘𝑖)
3: 𝑘𝑖+1 = 𝐷𝑅𝑖(𝑘1) ⋅ 𝛽𝑖
4: 𝛽𝑖+1 = LFSR2-STATE UPDATE(𝛽𝑖)
5: end for
6: return 𝑟𝑖𝑗

Table 2
Comparison of storage overhead between RS codes, SSS and RSS scheme based DSS for
(𝑡, 𝑛) = (3, 4)

Data storage technique Storage overhead

RS Code 1.33 × data size
SSS Scheme 4 × data size
RSS Scheme 1.33 × data size

4. Proposed modified ramp secret sharing for reduced storage
overhead

Cloud platform is usually built upon distributed storage system
(DSS), which relies on either replication codes or erasure codes such
as Reed Solomon (RS) codes for ensuring data availability. The same
data is replicated among 𝑛 servers using (1, 𝑛) replication codes which
imposes a storage overhead of 𝑛 times. Whereas a fraction (1∕𝑡) of the
data is stored in each of the 𝑛 servers using (𝑡, 𝑛) RS codes which
reduces the storage overhead to 𝑛/𝑡 times. SSS is a special case of RS
codes, where only one coefficient is used to store the secret instead
of the entire polynomial. This implies that in RS codes, all the 𝑡
coefficients in Eq. (1) are filled with the data to be stored whereas
in SSS, the secret to be shared is assigned as the constant term 𝑎0
and all other 𝑡 − 1 coefficients are filled with random values. Thus,
the storage overhead for SSS will be 𝑛 times, i.e., similar to that of
(1, 𝑛) replication codes [5]. Hence while extending proposed MSSS
to provide data availability in addition to SD processing over cloud,
the storage overhead also increases. However, the storage overhead
problem of MSSS can be resolved by using a variant of secret sharing
scheme, i.e., ramp secret sharing (RSS) scheme [41], which fills all the
coefficients in the polynomial with the data to be shared, instead of
original SSS. Hence, (𝑡, 𝑛) RSS scheme is similar to RS codes and ensure
data availability with lesser storage overhead compared to SSS. Table 2
shows the comparison of storage overhead of various schemes for 𝑡 =
3 and 𝑛 = 4.

In addition to reduction in storage overhead, RSS can also sup-
port SD processing. However, original RSS scheme also suffers from
collusion attack. Hence, it is required to modify RSS scheme to resist
collusion attack without sacrificing the data processing capability. The
details of the modified RSS scheme are as follows.

4.1. Design of modified ramp secret sharing scheme

In original (𝑡, 𝑛) RSS, the 𝑛 shares are generated through polynomial
evaluation as in SSS, but all the 𝑡 random coefficients in the polynomial
are replaced with the secret data to be shared as shown in Eq. (11),
where 𝑠11, 𝑠12, ⋯, 𝑠1𝑡 denote the secret data.

𝑓 (𝑥) = 𝑠11 + 𝑠12𝑥 + 𝑠13𝑥
2 +⋯ + 𝑠1𝑡𝑥

𝑡−1(𝑚𝑜𝑑 𝑝) (11)

The share of the 𝑗th participant among 𝑛 participants is obtained by
evaluating the polynomial, 𝑓 (𝑥) given in Eq. (11) with index, 𝑥𝑗 ∈ 𝐹𝑝.
The secret, 𝑠11, 𝑠12, ⋯, 𝑠1𝑡 can be reconstructed by retrieving any 𝑡 out
of 𝑛 shares.

As in the case of MSSS scheme, the index is hidden from the
participant (CSP) through encryption. However, the secrets can be

revealed through mounting a KPA during collusion of any 𝑡 CSPs. In
order to reconstruct the secret from any 𝑡 out of 𝑛 shares in RSS, it
is required to find the Lagrange base polynomial, 𝛾𝑗 (𝑥) in terms of its
coefficients, 𝛾𝑗,𝑖 as shown in Eq. (12).

𝛾𝑗 (𝑥) =
𝑡

∏

𝑘=1,𝑘≠𝑗

(𝑥 − 𝑥𝑘)
(𝑥𝑗 − 𝑥𝑘)

=
𝑡

∑

𝑖=1
𝛾𝑗,𝑖𝑥

𝑖 (12)

Now, the secret, 𝑠11, 𝑠12,… , 𝑠1𝑡 in RSS scheme can be retrieved using
coefficients, 𝛾𝑗,𝑖 as,

⎡

⎢

⎢

⎢

⎢

⎣

𝑠11
𝑠12
⋮
𝑠1𝑡

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝛾1,1 𝛾2,1 ⋯ 𝛾𝑡,1
𝛾1,2 𝛾2,2 ⋯ 𝛾𝑡,2
⋮ ⋮ ⋱ ⋮
𝛾1,𝑡 𝛾2,𝑡 ⋯ 𝛾𝑡,𝑡

⎤

⎥

⎥

⎥

⎥

⎦

⋅

⎡

⎢

⎢

⎢

⎢

⎣

𝑓 (𝑥1)
𝑓 (𝑥2)
⋮

𝑓 (𝑥𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

(13)

This means that the secret reconstruction process can be expressed as
a set of 𝑡 linear equations in terms of the Lagrange coefficients, 𝛾𝑗,𝑖 and
the corresponding shares. Therefore an adversary knowing 𝑡 different
set of secrets can find the Lagrange coefficients by solving these set of
linear equations similar to the set of equations shown in Eq. (9) for SSS
scheme.

As in the case of MSSS scheme, blinding the secrets can prevent
𝑡 colluding CSPs from retrieving Lagrange coefficients, 𝛾𝑗,𝑖 by solving
the set of 𝑡 equations. Hence, the share generation step for share 𝑗
corresponding to secret, (𝑠11, 𝑠12, 𝑠13,… , 𝑠1𝑡) in the case of modified RSS
(MRSS) scheme can be written as,

𝑓 (𝑥𝑗) = (𝑠11 + 𝑟11) + (𝑠12 + 𝑟12)𝑥𝑗 + (𝑠13 + 𝑟13)𝑥2𝑗
+ ⋯ + (𝑠1𝑡 + 𝑟1𝑡)𝑥𝑡−1𝑗 (𝑚𝑜𝑑 𝑝) (14)

where 𝑟11, 𝑟12, 𝑟13,… , 𝑟1𝑡 are random numbers used to blind the secret,
𝑠11, 𝑠12, 𝑠13,… , 𝑠1𝑡 respectively.

MRSS also preserves additivity and homogeneity properties shown
in Eq. (7) and (8) for MSSS scheme, which are required to support
shared domain processing. In order to ensure that the randomness and
security properties of random numbers are preserved in the homomor-
phically combined shares, the random numbers used to blind secrets in
MRSS scheme are also generated using LFSR based keystream generator
detailed in Section 3.3. In both (𝑡, 𝑛) MSSS and MRSS schemes, the data
owner generates 𝑛 shares of the blinded secret data using indices and
only the shares are outsourced to 𝑛 different cloud service providers
(CSPs) so that the secret data can be reconstructed by retrieving shares
from any of the 𝑡 CSPs. In order to prevent the secret data recovery
through collusion attack, the indices and LFSR keys are hidden from
the CSPs and are distributed only among the data owners through key
exchange schemes or by communicating the encrypted keys prior to
data sharing, similar to MSSS scheme.

Even though the proposed MRSS scheme looks structurally similar
to Krawczyk′s scheme [26] detailed in Section 1.1, the indices used to
generate shares from the encrypted/blinded secret is hidden from the
participants/ cloud servers in the MRSS scheme. Hence, it is difficult to
retrieve even the encrypted secret in MRSS scheme if threshold number
of cloud servers collude. Moreover, since the security of Krawczyk′s
scheme depends completely on the security of encryption scheme, it is
necessary to use secure encryption schemes such as AES. This prevents
the adoption of Krawczyk scheme in cloud based homomorphic process-
ing applications. In the proposed scheme, in order to retain the inherent
homomorphic properties of secret sharing scheme, we blind the secret
to be processed in SD with carefully designed linearly independent
keystreams of LFSR.

Journal of Information Security and Applications 60 (2021) 102869

7

Lakshmi V.S. et al.

5. Proposed scheme for integrity verification and data reconstruc-
tion

The integrity of the stored data or processed data can be verified by
comparing the data reconstructed from two set of shares. Even though
both MSSS and MRSS schemes can facilitate data integrity verification
(IV), the IV process is explained with respect to MRSS scheme as it is the
generalized version. Consider a (𝑡, 𝑛) MRSS scheme, which can tolerate
corruption of data stored in any of the 𝑛 − 𝑡 − 1 servers. Here the data
file to be stored is first divided into 𝑡 fragments and it forms the secret
data set, say 𝑠11, 𝑠12,… , 𝑠1𝑡. The shares, 𝑓 (𝑥𝑗), 1 ≤ 𝑗 ≤ 𝑛 corresponding
to this secret data set are generated as follows, where �̃�1𝑗 = 𝑠1𝑗 + 𝑟1𝑗 .

𝑓 (𝑥𝑗) = �̃�11 + �̃�12𝑥𝑗 +⋯ + �̃�1𝑡𝑥
2
𝑗 (𝑚𝑜𝑑 𝑝) (15)

Each of these shares are stored in separate cloud servers. The shares
from any (𝑡 + 1) servers are required for IV. The steps in verifying
the integrity of the reconstructed data are detailed in Algorithm 2.
During IV, blinded secret, �̃�′𝑟 and �̃�′′𝑟 are reconstructed from two set of 𝑡
servers, 𝑓 (𝑥1), 𝑓 (𝑥2),… , 𝑓 (𝑥𝑡) and 𝑓 (𝑥2), 𝑓 (𝑥3),… , 𝑓 (𝑥𝑡+1) respectively.
The decision on the integrity of the reconstructed data is done by
comparing �̃�′𝑟 with �̃�′′𝑟 . The reconstructed data is correct if they are
same, otherwise data is corrupted and measures for data recovery and
identification of corrupted servers need to be initiated.

Algorithm 2 For integrity verification of reconstructed data
Input: 𝑓 (𝑥1), 𝑓 (𝑥2),⋯ , 𝑓 (𝑥𝑡+1): Shares from 𝑡 + 1 servers
Output: Status of integrity verification
1: Compute blinded secret, �̃�′𝑟 = (�̃�′11, �̃�

′
12,⋯ , �̃�′1𝑡) using Eq. (13) from

shares, 𝑓 (𝑥1), 𝑓 (𝑥2),⋯ , 𝑓 (𝑥𝑡).
2: Compute blinded secret, �̃�′′𝑟 = (�̃�′′11, �̃�

′′
12,⋯ , �̃�′′1𝑡) using Eq. (13) from

shares, 𝑓 (𝑥2), 𝑓 (𝑥3),⋯ , 𝑓 (𝑥𝑡+1).
3: if �̃�′𝑟 = �̃�′′𝑟 then
4: Return “Reconstructed data is correct”.
5: else
6: Return “Data is corrupted and recovery needed”.
7: end if

The recovery of secret data and identification of corrupted servers
are possible if atmost 𝑛 − 𝑡 − 1 servers are corrupted by adversaries as
shares from 𝑡 + 1 servers are required for IV. Once the data corruption
is detected, in order to identify the malicious server, the shares from
all the servers are retrieved and data is reconstructed using all possible
combinations of 𝑡 servers. In (𝑡, 𝑛) MRSS scheme, secret set of size 𝑡 can
be reconstructed from 𝑡 out of 𝑛 shares in

(𝑛
𝑡

)

possible ways. The recon-
structed data will be incorrect if one or more of the 𝑡 servers selected
for secret reconstruction is corrupted. If one server among 𝑛 servers is
malicious, the number of possible combinations in which the selected
set of 𝑡 servers includes the malicious server can be expressed as

(𝑛−1
𝑡−1

)

.
This is equivalent to choosing 𝑡 − 1 from 𝑛 − 1 servers as the corrupted
server is fixed as one of the chosen servers. Similarly, if 2 out of 𝑛
servers are corrupted, the number of possible combinations in which
reconstructed data will be incorrect is given by

[

(2
1

)(𝑛−1
𝑡−1

)

−
(2
2

)(𝑛−2
𝑡−2

)

]

,
where

(2
1

)(𝑛−1
𝑡−1

)

indicates the number of ways in which each of the two
servers are in the selected 𝑡 servers and

(2
2

)(𝑛−2
𝑡−2

)

denotes the number
of ways in which both the corrupted servers are in the selected set of 𝑡
servers. In general, if 𝑘′ out of 𝑛 servers are corrupted, the number of
possible combinations of 𝑡 servers, 𝑁𝑐 which generate corrupted secret
data is given by Eq. (16). It is to be noted that to ensure recovery of
correct data, 𝑘′ ≤ (𝑛 − 𝑡 − 1).

𝑁𝑐 =
(

𝑘′

1

)(

𝑛 − 1
𝑡 − 1

)

−
(

𝑘′

2

)(

𝑛 − 2
𝑡 − 2

)

−
(

𝑘′

3

)(

𝑛 − 3
𝑡 − 3

)

− ⋯ −
(

𝑘′

𝑘′

)(

𝑛 − 𝑘′

𝑡 − 𝑘′

)

(16)

Based on the above discussions, the steps in the recovery of secret
data and identification of malicious server are developed as detailed

in Algorithm 3. As a first step, blinded secret, �̃�′𝑟𝑖 = (�̃�′11, �̃�
′
12,… , �̃�′1𝑡),

1 ≤ 𝑖 ≤
(𝑛
𝑡

)

is computed from all possible
(𝑛
𝑡

)

combinations of 𝑡 servers,
𝑍′

𝑖 = (𝑖1, 𝑖2,… , 𝑖𝑡), where each 𝑖𝑘, 1 ≤ 𝑘 ≤ 𝑡 represent the index 𝑗,
1 ≤ 𝑗 ≤ 𝑛 of servers. Then a table of

(𝑛
𝑡

)

entries is created which consists
of the indices of 𝑡 servers, 𝑍′

𝑖 and the corresponding computed data, �̃�′𝑟𝑖,
1 ≤ 𝑖 ≤

(𝑛
𝑡

)

. The data recovery and detection of the corrupted server can
be done by comparing the table entries. The maximum number of table
entries which will result in erroneous recovery of data is decided by the
value of 𝑁𝑐 computed with 𝑘′ = (𝑛 − 𝑡 − 1), as it is possible to recover
the data without tampering only if 𝑘′ ≤ (𝑛 − 𝑡 − 1). This means that
the data can be recovered only if the number of table entries, 𝑁𝑚 with
matching �̃�′𝑟𝑖 is at least

(

(𝑛
𝑡

)

−𝑁𝑐

)

. Then the corresponding matching
data, �̃�′𝑟𝑖 in 𝑁𝑚 entries, represented as �̃�𝑟 = (�̃�11, �̃�12,… , �̃�1𝑡) give the
recovered blinded secret and the corrupted servers can be identified
from the list of indices of servers which give erroneous reconstructed
data. It must be noted that the indices of malicious servers, 𝑖𝑐 , will not
be present in the list of indices of servers, 𝑍𝑖 which return the correct
reconstructed data. On the other hand, if the retrieved data values, �̃�′𝑟𝑖
= (�̃�′11, �̃�

′
12,… , �̃�′1𝑡) do not match in at least

(

(𝑛
𝑡

)

−𝑁𝑐

)

table entries,
it indicates that the data recovery is not possible as the number of
corrupted servers, 𝑘′ > (𝑛 − 𝑡 − 1).

Algorithm 3 For data recovery and corrupted server identification
Input: 𝑓 (𝑥1), 𝑓 (𝑥2),⋯ , 𝑓 (𝑥𝑛): Shares from 𝑛 servers
Output: Recovered blinded secret, �̃�𝑟 = (�̃�11, �̃�12,⋯ , �̃�1𝑡) and indices of
corrupted servers, 𝑖𝑐
1: Assign unique index 𝑗, 1 ≤ 𝑗 ≤ 𝑛 for each server.
2: for 𝑖 = 1 ∶

(𝑛
𝑡

)

do
3: Pick 𝑖th set of 𝑡 servers with indices (𝑖1, 𝑖2,⋯ , 𝑖𝑡) where 𝑖𝑘, 1 ≤

𝑘 ≤ 𝑡 represent the index 𝑗 of servers.
4: Compute blinded secret, �̃�′𝑟𝑖 = (�̃�′11, �̃�

′
12,⋯ , �̃�′1𝑡) from shares

𝑓 (𝑥𝑖1), 𝑓 (𝑥𝑖2),⋯ , 𝑓 (𝑥𝑖𝑡).
5: end for
6: Create a table of computed data �̃�′𝑟𝑖, 1 ≤ 𝑖 ≤

(𝑛
𝑡

)

together with
set of indices, 𝑍′

𝑖 = (𝑖1, 𝑖2,⋯ , 𝑖𝑡), where 𝑖𝑘 is the index of servers
participated in reconstructing the data.

7: Compute 𝑁𝑐 for 𝑘′ = (𝑛 − 𝑡 − 1).
8: Compute the number of entries, 𝑁𝑚 with matching �̃�′𝑟𝑖 and represent

those �̃�′𝑟𝑖 as �̃�𝑟 and corresponding 𝑍′
𝑖 as 𝑍𝑖.

9: if 𝑁𝑚 ≥
(

(𝑛
𝑡

)

−𝑁𝑐

)

then
10: Find the indices of corrupted servers, 𝑖𝑐 , where 𝑖𝑐 ∉ 𝑍𝑖 which

return the correct reconstructed data, �̃�𝑟.
11: Return �̃�𝑟 = (�̃�11, �̃�12,⋯ , �̃�1𝑡)
12: Return 𝑖𝑐
13: else
14: Return “More than (𝑛 − 𝑡 − 1) servers are corrupted and data

cannot be recovered”.
15: end if

Table 3 shows the identification of corrupted servers by taking (3, 6)
MRSS scheme as an example. This scheme can tolerate data corruption
in any of the 2 servers as 𝑛−𝑡−1 = 2. Therefore, for the results tabulated
in Table 3, malicious server identification with one corrupted server
(say, server, 𝑖𝑐 = 3) and two corrupted servers (say, server, 𝑖𝑐 = 3 and 5)
are considered as two cases. The number of combinations, 𝑁𝑐 through
which the selected set of 𝑡 servers include one corrupted server and
two corrupted servers respectively are 10 and 16. These values can be
obtained by substituting 𝑘′ = 1 and 𝑘′ = 2 in Eq. (16). In Table 3,
the tick mark entries show that the data reconstructed from servers
with the corresponding set of indices are same. Whereas cross mark
indicate that different sets of data are obtained on reconstruction using
the corresponding set of servers.

In order to relieve the data owner from the burden of verifying the
integrity of reconstructed data, it is possible to assign the IV task to a
trusted third party (TTP), who will not collude with the cloud servers.

Journal of Information Security and Applications 60 (2021) 102869

8

Lakshmi V.S. et al.

Table 3
Corrupted server identification.

Sl No. 𝑖 Indices of 𝑡
servers
𝑍′

𝑖 = (𝑖1 , 𝑖2 , 𝑖3)

One
corrupted
server
(𝑖𝑐 = 3)

Two
corrupted
servers
(𝑖𝑐 = 3 & 5)

Sl No 𝑖 Indices of 𝑡
servers
𝑍′

𝑖 = (𝑖1 , 𝑖2 , 𝑖3)

One
corrupted
server
(𝑖𝑐 = 3)

Two
corrupted
servers
(𝑖𝑐 = 3 & 5)

1 1 2 3 X X 11 2 3 4 X X
2 1 2 4 ✓ ✓ 12 2 3 5 X X
3 1 2 5 ✓ X 13 2 3 6 X X
4 1 2 6 ✓ ✓ 14 2 4 5 ✓ X
5 1 3 4 X X 15 2 4 6 ✓ ✓

6 1 3 5 X X 16 2 5 6 ✓ X
7 1 3 6 X X 17 3 4 5 X X
8 1 4 5 ✓ X 18 3 4 6 X X
9 1 4 6 ✓ ✓ 19 3 5 6 X X
10 1 5 6 ✓ X 20 4 5 6 ✓ X

However, the data owner should ensure that TTP should not be able
to access the original secret data. This condition is also satisfied here
since the TTP will only be able to get the randomized secret data as the
blinded secrets are generated during IV using share indices.

6. Privacy preserving DWT computation based on proposed MSSS
and MRSS scheme

The exact design methodology of random numbers depends on the
SD data processing operations. DWT is one of the primary operations
performed on medical images before many other more sophisticated
tasks such as anomaly detection, fusion etc. The shares are generated
corresponding to each pixel of the image in MSSS whereas the shares
are generated corresponding to a group of pixels (group size depends
on 𝑡 value) in MRSS. For better understanding, first the SD DWT
computation is explained with respect to (𝑡, 𝑛) MSSS scheme. This is
followed by the modifications to be done while converting it to (𝑡, 𝑛)
MRSS scheme. In order to illustrate the design of random numbers,
image decomposition based on single level Haar wavelet is considered.
The privacy preserving image decomposition consist of mainly three
steps: namely share generation, Haar DWT computation in SD and
reconstruction of decomposed image. The detailed explanation of each
of the three steps are given in the following section.

6.1. Share generation

The shares are generated at the client side, where image acquisition
take place as shown in Fig. 1. Let 𝐼 be the original image of size
𝑏 × 𝑏, which is to be outsourced to the cloud servers for SD DWT
computation. Share generation process consists of 3 steps: blinding the
original image, preprocessing and generation of image shares.

(i) Blinding the original image
Initially the image pixel values are blinded by adding with
random values generated through key. The random values taken
from LFSR keystream are arranged as a 2D matrix to form
the random image of the same size as original image for this
purpose.
The blinding process can be mathematically represented as,

𝐼(𝑢, 𝑣) = 𝐼(𝑢, 𝑣) + 𝑅(𝑢, 𝑣) (𝑚𝑜𝑑 𝑝) (17)

where 1 ≤ 𝑢, 𝑣 ≤ 𝑏. 𝑅 represents the random image used for
blinding the original image, 𝐼 . Here the pixel values of images,
𝐼 and 𝑅 are symbols from field, 𝐹𝑝.
While decomposing image share using Haar wavelet, the row-
wise operations are followed by column-wise operations. The
single-level Haar wavelet decomposition is demonstrated in
Fig. 2 with a toy example consisting of a 4 × 4 image. From
Fig. 2, it is clear that the linear combination of adjacent 4
pixels are taken during single level Haar DWT computation.
Hence the corresponding 4 random values in the random image

need to be taken from linearly independent LFSR keystreams, so
that security properties are unaffected during single level Haar
wavelet decomposition.

(ii) Preprocessing the blinded images
Preprocessing is necessary to assure that the image pixel values
after decomposition are integers. Since single level Haar DWT
requires an averaging operation which involves a division by 2
(Eq. (24)), the blinded image is preprocessed as,

𝐼(𝑢, 𝑣) = 𝐼(𝑢, 𝑣) × 2 (18)

(iii) Generation of image shares
Using (𝑡, 𝑛) MSSS scheme, the 𝑗th share corresponding to the
image to be outsourced to the 𝑗th CSP, where 1 ≤ 𝑗 ≤ 𝑛, is
generated from the preprocessed image as,

𝐼𝑗 (𝑢, 𝑣) = 𝐼(𝑢, 𝑣) +
𝑡−1
∑

𝑘=1
𝑎𝑘(𝑢, 𝑣) × 𝑥𝑗 (𝑚𝑜𝑑 𝑝) (19)

where 𝐼𝑗 represents the 𝑗th share of preprocessed image, 𝐼 ; and
𝑎𝑘 represent the random coefficients used for share generation.
𝑥𝑗 denotes the index of 𝑗th image share and are random integers
from 𝐹𝑝. It is to be noted that in MRSS scheme, the 𝑡−1 random
coefficients 𝑎𝑘 will be replaced by pixel values of the image
during share generation.

6.2. 2D Haar DWT computation in SD

The CSPs compute the DWT on their image shares. As demonstrated
in Fig. 2, the DWT using Haar wavelet is computed by first performing
row-wise decomposition, which is then followed by column-wise de-
composition. The steps in the single-level Haar DWT computation are
as follows.

(i) Row-wise decomposition
The row-wise decomposition of each of the 𝑗th share of image is
given by the following pair of equations.

𝐼𝑅𝑗 (𝑢, 𝑣) = 𝐼𝑗 (𝑢,𝑤) + 𝐼𝑗 (𝑢,𝑤 + 1) (𝑚𝑜𝑑 𝑝) (20)

𝐼𝑅𝑗 (𝑢, (𝑏∕2) + 𝑣) = 𝐼𝑗 (𝑢,𝑤) − 𝐼𝑗 (𝑢,𝑤 + 1) (𝑚𝑜𝑑 𝑝) (21)

where 𝐼𝑅𝑗 denotes the row decomposed version of 𝑗th image
share, where 1 ≤ 𝑗 ≤ 𝑛. Here, for each value of 𝑢, 𝑣 is varied
from 1 to 𝑏∕2 and 𝑤 is varied from 1 to 𝑏 by incrementing in
steps of 2. Thus 𝑢 and 𝑤 values range from 1 to 𝑏 and 𝑣 values
range from 1 to 𝑏∕2.

(ii) Column-wise decomposition
Now, the column wise decomposition is performed on the row
decomposed image share according to the pair of equations
given below.

𝐼𝐶𝑗 (𝑢, 𝑣) = 𝐼𝑅𝑗 (𝑤, 𝑣) + 𝐼𝑅𝑗 (𝑤 + 1, 𝑣) (𝑚𝑜𝑑 𝑝) (22)

𝐼𝐶𝑗 ((𝑏∕2) + 𝑢, 𝑣) = 𝐼𝑅𝑗 (𝑤, 𝑣) − 𝐼𝑅𝑗 (𝑤 + 1, 𝑣) (𝑚𝑜𝑑 𝑝) (23)

Journal of Information Security and Applications 60 (2021) 102869

9

Lakshmi V.S. et al.

Fig. 2. Single level Haar wavelet decomposition.

where 𝐼𝐶𝑗 denotes the column decomposed version of row de-
composed 𝑗th image share. Here also 𝑤 ranges from 1 to 𝑏 (in
steps of 2), whereas 𝑢 ranges from 1 to 𝑏∕2 and 𝑣 ranges from 1
to 𝑏.

(iii) Division by two
In order to obtain the final decomposed image, each pixel of
column-wise decomposed image is divided by 2 as per the
following equation.

𝐼𝐷𝑗 (𝑢, 𝑣) = 𝐼𝐶𝑗 (𝑢, 𝑣) × (2−1 (𝑚𝑜𝑑 𝑝)) (𝑚𝑜𝑑 𝑝) (24)

where 𝐼𝐷𝑗 represents the final decomposed 𝑗th image share.

6.3. Reconstruction of decomposed image

Now in order to obtain original decomposed image, the health care
provider or authentic entity should retrieve the decomposed image
shares from any of the 𝑡 CSPs. The steps in the recovery of the final
decomposed plaintext image are as follows.

1. Lagrange interpolation
The decomposed image, 𝐼𝑅𝐷 (𝑢, 𝑣) in blinded form is reconstructed
from any 𝑡 shares using Lagrange interpolation as follows.

𝐼𝑅𝐷 (𝑢, 𝑣) = 𝐼𝐷1(𝑢, 𝑣) ∗ 𝛾1 + 𝐼𝐷2(𝑢, 𝑣) ∗ 𝛾2 +⋯

+ 𝐼𝐷𝑡(𝑢, 𝑣) ∗ 𝛾𝑡 (𝑚𝑜𝑑 𝑝) (25)

where

𝛾𝑗 =
∏

1≤𝑘≤𝑡,𝑘≠𝑗

𝑥𝑘
𝑥𝑘 − 𝑥𝑗

(26)

It is to be noted that in MRSS scheme, the decomposed image in
blinded form is reconstructed by multiplying the set of 𝑡 shares
with the Lagrange coefficient matrix as shown in Eq. (13).

2. Post processing
As the final value could be positive or negative, care need be
taken to select 𝑝 such that it is at least twice larger than the range
of values involved. Then the final value, 𝐼𝑃𝐷 can be correctly
recovered in the following way.

𝐼𝑃𝐷 (𝑢, 𝑣) = 𝐼𝑅𝐷 (𝑢, 𝑣)∕2; 𝑖𝑓 𝐼𝑅𝐷 (𝑢, 𝑣) > (𝑝 + 1)∕2

= (𝐼𝑅𝐷 (𝑢, 𝑣) − 𝑝)∕2; 𝑖𝑓 𝐼𝐷𝑅 (𝑢, 𝑣) < (𝑝 + 1)∕2
(27)

3. Removal of processed random image
As these SD processing operations are done on the blinded image
shares, it is required to cancel the effect of random image from
the reconstructed decomposed image. The random image also
undergoes same processing performed on the original image,
during DWT computation. Therefore, the decomposed random
image, �̂�𝑃

𝐷 can be generated by applying the same linear combi-
nation on the random numbers in the random image. Then the
final image in DWT domain can be obtained as,

𝐼𝐷(𝑢, 𝑣) = 𝐼𝑃𝐷 (𝑢, 𝑣) − �̂�𝑃
𝐷(𝑢, 𝑣) (28)

Fig. 3. LFSR keystream distribution for random image generation considering a toy
image example of size 4 × 4.

Fig. 4. Distribution of LFSR keystream for generating random image for an image of
size 𝑏 × 𝑏.

6.4. Random image generation

The generation of random image used to blind the original image
depends on the processing. While computing single level Haar DWT
on image shares, linear combination of adjacent 4 pixels takes place
as shown in Fig. 2. Therefore in order to retain the randomness pro-
vided by the LFSR keystream in the share after DWT computation,
it is required to use random symbols from four linearly independent
keystreams to blind the four adjacent pixels, which are being lin-
early combined. The steps for generating linearly independent LFSR
keystreams is already given in Algorithm 1. Now, the distribution of
the four keystreams for generating the random images used to blind
the original image is illustrated in Fig. 3 with a toy example consisting
of image with size 4 × 4. In the figure, 𝑟1,1, 𝑟1,2, 𝑟1,3, 𝑟1,4 is the keystream
generated using LFSR initial state, 𝑘1. Similarly, 𝑘2, 𝑘3 and 𝑘4 generates
other keystreams 𝑟2,𝑖, 𝑟3,𝑖 and 𝑟4,𝑖 for 1 ≤ 𝑖 ≤ 4.

In general, the distribution of different keystreams for generating
the random image used to blind an image of size 𝑏×𝑏 is shown in Fig. 4.
Here 𝑟𝑖,1, 𝑟𝑖,2,… , 𝑟𝑖,𝑏2∕4 is the keystream generated using LFSR key, 𝑘𝑖,
where 𝑖 = 1, 2, 3, 4.

The proposed scheme can be extended to image decomposition us-
ing 𝑙-level Haar DWT. During single level Haar DWT computation, four
adjacent pixels are linearly combined. Therefore, 4𝑙 pixels are linearly
combined during 𝑙-level Haar DWT computation. Hence random images
should be generated using 4𝑙 linearly independent LFSR initial states.

From the single level Haar DWT decomposition demonstrated in
Fig. 2, it is clear that DWT computation involves pixel level operations.

Journal of Information Security and Applications 60 (2021) 102869

10

Lakshmi V.S. et al.

Hence 𝑛 shares are generated corresponding to each image pixel in (𝑡, 𝑛)
MSSS scheme, as the secret data is assigned as the constant term of the
polynomial used for share generation. Whereas in (𝑡, 𝑛) MRSS scheme,
𝑛 shares are generated corresponding to a group of 𝑡 image pixels.
Hence in order to facilitate the required processing operation, care must
be taken while arranging the 𝑡 pixels used to generate the shares. In
other words, the pixels to be linearly combined during SD processing
should not be grouped together to form 𝑡 pixels which generates a share.
For instance, in the 4 ×4 image 𝐼 shown in Fig. 2, the pixels 𝑏′, 𝑒′, 𝑓 ′

cannot be taken as the coefficient term in MRSS along with the pixel,
𝑎′ as these pixels are linearly combined during single level Haar DWT
computation.

7. Security analysis

In this section, security of proposed schemes is first analyzed under
collusion of 𝑡-1 participants. Then the mathematical cryptanalysis is
also done to evaluate the security of the proposed schemes against
known plaintext attack through collusion of threshold number of par-
ticipants. Finally, the security of the proposed schemes against different
statistical attacks are analyzed through simulation studies. The security
and performance is analyzed by carrying out image decomposition
based on single-level Haar DWT in SD.

7.1. Security against collusion of 𝑡-1 participants

In general, (𝑡, 𝑛) secret sharing schemes provide information the-
oretic security, which implies that no information about the secret
can be retrieved from knowledge of (𝑡-1) shares even if the adversary
has infinite computational capabilities. Secret sharing schemes can be
classified as perfect [20] and/or ideal [21] based on the information
theoretic conditions. Let (𝑡, 𝑛) be a secret sharing scheme where the 𝑛
shares, 𝑓 (𝑥1), 𝑓 (𝑥2),… , 𝑓 (𝑥𝑛) of secret 𝑠 is shared among 𝑛 participants.
Then the (𝑡, 𝑛) secret sharing scheme is said to be perfect if the
following conditions are satisfied.

1. The secret 𝑠 can be reconstructed from any 𝑡 shares

𝐻
(

𝑠 ∣ 𝑓 (𝑥1), 𝑓 (𝑥2),… , 𝑓 (𝑥𝑡)
)

= 0 (29)

2. No information about 𝑠 can be obtained from the knowledge of
any 𝑡 − 1 of fewer shares

𝐻
(

𝑠 ∣ 𝑓 (𝑥1), 𝑓 (𝑥2),… , 𝑓 (𝑥𝑡−1)
)

= 𝐻(𝑠) (30)

For the above 2 conditions to hold, it is necessary that 𝐻
(

𝑓 (𝑥𝑖)
)

≥
𝐻(𝑠), 𝑖 = 1, 2,… , 𝑛. This implies that for a secret sharing scheme to be
perfect, the size of share, |

|

𝑓 (𝑥𝑖)|| should be at least equal to the size of
secret, |𝑠|, i.e., |

|

𝑓 (𝑥𝑖)|| ≥ |𝑠|, 𝑖 = 1, 2,… , 𝑛.
Now, a secret sharing scheme is said to be ideal if the information

rate, 𝜌 = 1. Here, information rate, 𝜌 is defined as,

𝜌 =
𝑙𝑜𝑔2 |𝑆|
𝑙𝑜𝑔2 |𝐹 |

(31)

where |𝑆| is the set of possible secrets and |𝐹 | is the set of possible
shares. Hence, for a secret sharing scheme to be ideal, the size of the
secret should be equal to the size of share.

The proposed MSSS is a modified version of Shamir secret sharing
scheme where the size of the secrets are same as that of shares since
their domains are equal. Therefore, the (𝑡, 𝑛) proposed MSSS scheme
satisfies perfectness and ideality conditions defined above. But the
proposed (𝑡, 𝑛) MRSS scheme is non-perfect and non-ideal since the size
of shares are lesser than that of secrets.

In general, ramp schemes try to reduce the share size by relaxing
the perfect secrecy conditions. The notion of secrecy for ramp schemes
is computational secrecy which implies that no computational informa-
tion about the secret can be gained from the knowledge of (𝑡-1) shares
by computationally bounded adversaries [26]. In (𝑡, 𝑛) ramp scheme,

the secret is a vector of size 𝑡. The secret could be any one out of 𝑝𝑡

different vectors as the shares are computed over finite field, 𝐹𝑝. If
the adversary knows (𝑡-1) shares and their indices, he can retrieve the
secret by guessing the 𝑡th share. If it is a wrong guess, the resulting
secret differs from the original secret in all 𝑡 positions [42]. Hence,
the probability of retrieving the secret by an adversary who knows (𝑡-
1) shares and their indices is 1

𝑝 since there are 𝑝 possibilities for the
unknown share. However, the proposed MRSS scheme resists the above
mentioned attack as the indices are hidden from the cloud servers
which stores the share. Even though, the adversary manages to obtain
(𝑡-1) shares, he will not be able to retrieve the secret with a probability
1
𝑝 since the indices are unknown. Moreover, the secret is also blinded
with keystreams of LFSR. So, the computational complexity of the
proposed MRSS scheme against adversary possessing (𝑡-1) shares will
be definitely higher than that for the known-plaintext attack through
collusion of 𝑡 participants, detailed in the next section.

7.2. Known-plaintext Attack (KPA) during collusion of 𝑡 participants

An attacker can mount a KPA in order to retrieve the secret keys if
he possess ciphertexts and some plaintexts. In KPA against the proposed
MSSS and MRSS scheme through collusion of 𝑡 CSPs, the attacker tries
to retrieve the Lagrange bases with the knowledge of 𝑡 secrets and their
corresponding shares. Since the random numbers are designed in such
a way that their effect cannot be canceled during linear combinations,
it is impossible to find the Lagrange bases by removing the contribution
of random number from the set of 𝑡 equations. Then the attacker can
retrieve the key only through guessing the random number and then
trying to find 𝛾𝑗 or 𝛾𝑗,𝑖, 1 ≤ 𝑗 ≤ 𝑡 by solving the set of 𝑡 equations. As a
result, a successful attack requires following steps.

(1) Pick 𝑡 secrets, 𝑠𝑖, 1 ≤ 𝑖 ≤ 𝑡 in MSSS and 𝑡 sets of secrets,
𝑠𝑖1, 𝑠𝑖1,… , 𝑠𝑖𝑡, 1 ≤ 𝑖 ≤ 𝑡 in MRSS and their corresponding shares,
𝑦𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑡.

(2) Guess one set of initial keys 𝑘1, 𝛽1 and feedback polynomial, 𝑞(𝑧),
which are the secret keys corresponding to LFSR random number
generator.

(3) In MSSS, from 𝑡 equations between pairs (𝑠𝑖, 𝑦𝑖𝑗), solve for 𝛾𝑗
using Eq. (10). While in MRSS, from 𝑡 sets of equations between
pairs (𝑠𝑖𝑗 , 𝑦𝑖𝑗), solve for 𝛾𝑗𝑖.

(4) Repeat steps (2) and (3) for all possible values of keys 𝑘1, 𝛽1 and
𝑞(𝑧) and create the table corresponding to possible solutions of
𝛾𝑗 or 𝛾𝑗𝑖.

(5) Pick a new secret and its share.
(6) Solve for 𝛾𝑗 or 𝛾𝑗𝑖 using all the possible solutions of 𝛾𝑗 or 𝛾𝑗𝑖 from

the table.

The key space of random image generation system includes all
possible combinations of LFSR initial state, 𝑘1, feedback polynomial,
𝑞(𝑧) and multiplier key, 𝛽1. The feedback polynomial, 𝑞(𝑧) used in LFSR
should be primitive and the number of such polynomials of degree 𝐿
over 𝐹𝑝 is 𝜙(𝑝𝐿 −1)∕𝐿, where 𝜙 denotes the Euler totient function. The
number of initial states, 𝑘1 (see Theorem 2) is given by ∏𝑟

𝑗=1(𝑝
𝑑𝑗 − 1),

where 𝑑𝑗 is the degree of 𝑓𝑗 (𝑧) which corresponds to the irreducible
factors of 𝑧𝐿 − 1 [43]. The number of possibilities for 𝛽1 is given by
(𝑝 − 1)𝐿−1. Hence, the number of possible combinations of LFSR based
random number generator is given by 𝜙(𝑝𝐿 − 1)∕𝐿 ⋅

∏𝑟
𝑗=1(𝑝

𝑑𝑗 − 1) ⋅ (𝑝 −
1)𝐿−1. So in step (4), the attacker has 𝜙(𝑝𝐿 − 1)∕𝐿 ⋅

∏𝑟
𝑗=1(𝑝

𝑑𝑗 − 1) ⋅ (𝑝 −
1)𝐿−1 possible combinations for 𝛾𝑗 or 𝛾𝑗𝑖 and he has to try all these
possibilities for 𝛾𝑗 or 𝛾𝑗𝑖 in step (6). Therefore, the keyspace for the KPA
is 2⋅𝜙(𝑝𝐿−1)∕𝐿⋅∏𝑟

𝑗=1(𝑝
𝑑𝑗−1)⋅(𝑝−1)𝐿−1. The field size, 𝑝 should be at least

257, since the pixel values of the image varies from 0 to 255. The length
of LFSR, 𝐿 ≥ 4 for single level Haar DWT computation. Therefore by
considering a field size 𝑝 = 257 and LFSR length 𝐿 = 4, the keyspace is
approximately 283 and average computational complexity in mounting
a successful KPA is at least 282. It can be seen that the attack complexity

Journal of Information Security and Applications 60 (2021) 102869

11

Lakshmi V.S. et al.

increases to 2134 when 𝐿 increases to 8, with the same field size 𝑝 =
257. It should be noted that this level of security is independent of
the threshold number of shares, 𝑡. Hence it is possible to have a secure
MSSS and MRSS scheme even with two shares. Therefore (2, 2) MSSS
and MRSS schemes are considered in simulation studies.

7.3. Statistical attacks

Magnetic resonance imaging (MRI) systems are widely used for
pathological brain detection. DWT based feature extraction is widely
employed for disease diagnosis and for the classification of pathological
brains and healthy brains using MRI. Hence, for simulations we have
used healthy brain MRI and Alzheimer’s disease brain MRI datasets
from the website of Harvard university [44]. Simulation studies to
evaluate the performance of the proposed schemes are done on PC with
Intel(R) Xeon(R) CPU E3-1226 v3 3.3 GHz 16GB RAM running on Win-
dows 10 Professional equipped with MATLAB R2015b environment.
The evaluations of both MSSS and MRSS schemes are carried out by
creating 2 shares corresponding to MR images of 256 × 256 size and
using single level Haar DWT.

Even though field size, 𝑝 = 257 is sufficient, in order to preserve
the computation accuracy in SD, the field size must be large enough to
hold the result of processing. While performing single level Haar DWT
computation, the blinded MR images are first preprocessed by multi-
plying with 2; and 4 image pixels are linearly combined during single
level Haar DWT computation. Since the final value of the decomposed
pixels on reconstruction could be positive or negative, it is necessary
to select 𝑝 at least twice larger than the range of values. Thus to ensure
the correctness of image decomposition using single level Haar DWT
in SD, all the modulo operations need to be carried out using a prime
number at least ≥ 255 × 4 × 4. In this work, all simulations for image
decomposition are carried out using 𝑝 = 4091.

The resistance to statistical attacks is validated through histogram
analysis, key sensitivity analysis and correlation analysis.

7.3.1. Histogram analysis
A good secret sharing scheme should generate a uniformly dis-

tributed histogram corresponding to the image shares. This will prevent
the attacker from obtaining any information about the original image
from the histogram of the image shares. To demonstrate this, the nor-
mal brain MRI and its shares along with their histograms are shown in
Fig. 5. Since the shares generated using both MSSS and MRSS schemes
are similar, only one set is shown in figure. The figure shows that
the histograms of image shares generated through proposed schemes
are completely different from those of original image and is uniformly
distributed. Hence the proposed schemes are secure against histogram
attack.

7.3.2. Key sensitivity analysis
Key sensitivity of proposed scheme is analyzed by comparing shares

generated with keys which are differing only in a few bits. A good
secret sharing scheme should produce totally different shares. Key
sensitivity is usually expressed in terms of unified average changing
intensity (UACI) and number of pixels change rate (NPCR) [45]. The
UACI and NPCR values for various MR images are shown in Table 4. A
cryptographic scheme provides high key sensitivity if UACI value lies in
the range 33.3% to 33.8% and NPCR value is above 99.5% [45]. The
values in Table 4 proves that the proposed schemes exhibit high key
sensitivity.

Fig. 5. MR image, its shares (S1 & S2) and their corresponding histograms.

Table 4
Key sensitivity analysis.

MR Images UACI NPCR

Image 1 33.32% 99.99%
Image 2 33.34% 99.99%
Image 3 33.40% 99.99%
Image 4 33.32% 99.99%

Table 5
Correlation coefficients of MR image in plaintext domain (PD) and SD; and decomposed
MR image in SD.

Direction MR Image Decomposed MR

PD SD-S1 SD-S2 SD-S1 SD-S2

Horizontal 0.9662 0.0013 −0.0028 −0.0023 0.0046
Vertical 0.9705 −0.0025 0.0073 0.0034 −0.0081
Diagonal 0.9454 −0.0043 0.0057 0.0012 −0.0053

7.3.3. Correlation analysis
In general, each pixel of an image will be highly correlated with

its adjacent pixels either in horizontal, vertical or diagonal directions.
This correlation among image pixels can be quantified in terms of
correlation coefficient and these values should be low in order to with-
stand statistical attacks which exploits the correlation among adjacent
pixels. Table 5 shows the correlation analysis of plaintext MR image and
its shares before and after decomposition. It is evident from Table 5
that the proposed scheme fully randomizes the image pixels and no
information is leaked from the image shares.

8. Performance analysis

In this section, the accuracy of SD decomposition is analyzed
through qualitative and quantitative evaluation. The performance of
the proposed schemes in terms of storage overhead and computational
complexity is also evaluated by comparing with related schemes.

8.1. Qualitative analysis

The MR image and its two shares before and after decomposition
are shown as (a) - (e) in Fig. 6. The reconstructed DWT image from
its decomposed shares before and after removing random image are
shown as (f) and (g); and the DWT image obtained in PD is shown as
(h) in Fig. 6. From (g) and (h) in Fig. 6, it is clear that the SD DWT
computation gives same accuracy as that in PD.

The qualitative analysis of SD image decomposition for four differ-
ent MR images (normal and Alzheimer’s brain MRI) shown in Fig. 7
indicates that the SD results matches with the PD results.

Journal of Information Security and Applications 60 (2021) 102869

12

Lakshmi V.S. et al.

Fig. 6. Original MR image, their shares (S1 & S2) before and after decomposition;
decomposed shares; reconstructed image from decomposed shares before and after
removal of random image and decomposed image in PD. Here before and after random
image removal are abbreviated as BRIR and ARIR respectively.

Fig. 7. MR images and their corresponding decomposed images in SD after
reconstruction; and in PD.

8.2. Quantitative analysis

The accuracy of the SD image decomposition is first analyzed in
terms of various performance metrics such as structural similarity index
(SSIM), normalized correlation coefficient (NCC), mean-square error
(MSE), normalized absolute error (NAE), maximum difference (MD),
average difference (AD), structural content (SC) [46] and image quality
index (IQI) [47]. Table 6 shows the values of these metrics correspond-
ing to different images. SSIM, SC and NCC values corresponding to the
images are equal to 1; IQI values are also close to 1 and MSE, NAE,
MD and AD values for all images are equal to zero, which indicates
that reconstructed version of SD decomposed images are very close to
the PD decomposed images.

Table 6
Quantitative evaluation results of the decomposed image in SD.

Image SSIM SC NCC IQI MSE NAE MD AD

Image 1 1.0000 1.0000 1.0000 0.9936 0.0000 0.0000 0.0000 0.0000
Image 2 1.0000 1.0000 1.0000 0.9812 0.0000 0.0000 0.0000 0.0000
Image 3 1.0000 1.0000 1.0000 0.9857 0.0000 0.0000 0.0000 0.0000
Image 4 1.0000 1.0000 1.0000 0.9873 0.0000 0.0000 0.0000 0.0000

Table 7
Quantitative Evaluation Results based on decomposed images in PD and SD.

Image H Std. D

PD SD PD SD

Image 1 3.0026 3.0026 57.21 57.21
Image 2 4.0338 4.0338 99.55 99.55
Image 3 3.2888 3.2982 57.93 57.93
Image 4 4.3889 4.3905 99.76 99.76

The closeness of SD image decomposition is also compared with
that of PD decomposition in terms of metrics such as entropy (H) and
Standard Deviation (Std. D) [46]. Table 7 shows the H and Std. D values
of PD and SD image decomposition for different images. It should be
noted from Table 7 that the shared domain results are very close to the
plaintext domain results.

8.3. Storage overhead

The storage overhead for the proposed MSSS scheme can be ex-
pressed in terms of the number of shares being outsourced to the cloud.
In the proposed (2, 2) MSSS and MRSS scheme, since only two shares
can provide a security of more than 80 bits, the storage overhead will
be double in MSSS, while there is no storage overhead in MRSS scheme.
Whereas in the case of original (𝑡, 𝑛) SSS and RSS scheme, the storage
overhead is 𝑛 times and 𝑛∕𝑡 times respectively.

8.4. Computational complexity

The computational complexity of the proposed schemes can be ex-
pressed in terms of number of additions and multiplications. The client
side computational complexity involves the share generation process
before outsourcing and reconstruction of original processed data after
retrieving processed shares. The share generation step involves one
modular addition during blinding, one modular multiplication during
pre-processing; and one modular multiplication and one modular addi-
tion in the generation of each share. Thus the overall computational
complexity of the share generation step per image pixel includes 3
modular multiplications and 3 modular additions in 𝐹𝑝 for proposed (2,
2) MSSS and MRSS scheme, which involves generation of two shares.

Similarly the reconstruction of the processed secret involves 2 mod-
ular multiplications for generation of Lagrange bases; and 2 modular
multiplications and one modular addition in 𝐹𝑝 for Lagrange inter-
polation. This is followed by post processing and removal of random
number which includes one modular multiplication and one modular
subtraction in 𝐹𝑝 respectively. So the overall complexity of the se-
cret reconstruction step is 5 modular multiplications and 2 modular
additions in 𝐹𝑝, considering the complexity of addition is same as
subtraction. The bit complexity of modular multiplication and modular
addition operation are O((𝑙𝑜𝑔𝑝)2) and O(𝑙𝑜𝑔𝑝) respectively. Thus, the
computational complexity of share generation and secret reconstruction
process for the proposed (2, 2) MSSS and MRSS scheme is O(3×(𝑙𝑜𝑔𝑝)2)
bit multiplications (BM) and O(3 × 𝑙𝑜𝑔𝑝) bit additions (BA); and O(5 ×
(𝑙𝑜𝑔𝑝)2) BM and O(2 × 𝑙𝑜𝑔𝑝) BA respectively.

Journal of Information Security and Applications 60 (2021) 102869

13

Lakshmi V.S. et al.

8.5. Comparison and discussions

In this section, the proposed scheme is compared with secret shar-
ing scheme based on Chinese remainder theorem (CRT) which also
possess additive homomorphism [23,37]; Elliptic Curve–ElGamal (EC–
EG) based additive HES [48] and Paillier additive HES [15], which are
widely used for ED computation.

8.5.1. Secret sharing scheme based on CRT
The most widely used secret sharing scheme based on CRT is

Asmuth–Bloom scheme [23], whose additive homomorphic property is
utilized for secure domain processing [37]. For (𝑡, 𝑛) threshold secret
sharing scheme based on CRT, 𝑛 + 1 prime numbers are required
and shares are generated using congruence equations in CRT. Let the
sequence of pairwise coprime integers be 𝑚0 < 𝑚1 < 𝑚2 < ⋯ < 𝑚𝑛 such
that ∏𝑡

𝑗=1 > 𝑚0
∏𝑡−1

𝑗=1 𝑚𝑛−𝑗+1; and the secret be 𝑠1 such that 𝑠1 < 𝑚0. For
share generation, first pick a random integer, 𝐴 such that 𝑠1 + 𝐴.𝑚0 <
∏𝑡

𝑗=1 𝑚𝑗 . Then the 𝑛 shares, 𝑦𝑗 , 1 ≤ 𝑗 ≤ 𝑛 are generated as,

𝑦𝑗 = (𝑠1 + 𝐴.𝑚0) 𝑚𝑜𝑑 𝑚𝑗 (32)

The coprimes, 𝑚𝑗 , 1 ≤ 𝑗 ≤ 𝑛 will act as the key for retrieving secret from
any of the 𝑡 shares. Thus the secret, 𝑠1 can be recovered using shares,
𝑦1, 𝑦2,… , 𝑦𝑡 by solving the set of congruence equations. By CRT, since
𝑚1, 𝑚2,… , 𝑚𝑡 are pairwise coprime, the system has a unique solution
over modulo 𝑀 , where 𝑀 =

∏𝑡
𝑗=1 𝑚𝑗 . The secret 𝑠1 can be recovered by

first solving the system of congruence equations, followed by reduction
modulo 𝑚0 as shown in Eq. (33) and (34).

(𝑠1 + 𝐴.𝑚0) =
𝑡

∑

𝑗=1

[

𝑦𝑗 .
(

𝑀
𝑚𝑗

)

.

(

(

𝑀
𝑚𝑗

)−1
𝑚𝑜𝑑 𝑚𝑗

)]

𝑚𝑜𝑑 𝑀 (33)

𝑠1 = (𝑠1 + 𝐴.𝑚0) 𝑚𝑜𝑑 𝑚0 (34)

For fair comparison, the proposed modifications such as blinding
the secret and hiding the coprime integers (keys) are applied to (2, 2)
secret sharing scheme based on CRT. Therefore, the share generation
step involves one modular addition during blinding, one modular multi-
plication during preprocessing; and one modular multiplication and one
modular addition in share generation. Thus the overall computational
complexity of the share generation step per image pixel involves 3
modular multiplications and 3 modular additions for generation of two
shares. Similarly, the reconstruction of secret from two shares involves
two modular division for

(

𝑀
𝑚𝑗

)

, 𝑗 = 1, 2, two modular inversion

for
(

𝑀
𝑚𝑗

)−1
, 𝑗 = 1, 2, two modular multiplications and one modular

addition for finding (𝑠1 +𝐴.𝑚0) from Eq. (33). This is followed by post
processing and removal of random number which includes one modular
multiplication and one modular subtraction respectively. So the overall
complexity of secret reconstruction involves 7 modular multiplications
and 2 modular additions, since the bit complexity of modular inversion
and modular division is same as that of modular multiplication.

The bit complexity of share generation and secret reconstruction is
computed based on modulo 𝑚0 since the secret size depends only on
𝑚0 (i.e., 𝑠1 < 𝑚0). But it is to be noted that the original complexity
will be greater as share generation and secret reconstruction are done
based on higher modulo values. Thus, the computational complexity of
share generation and secret reconstruction process for the (2, 2) secret
sharing scheme based on CRT is O(3 × (𝑙𝑜𝑔 𝑚0)2) bit multiplications
(BM) and O(3× 𝑙𝑜𝑔 𝑚0) bit additions (BA); and O(7× (𝑙𝑜𝑔 𝑚0)2) BM and
O(2 × 𝑙𝑜𝑔 𝑚0) BA respectively. Also, as the modulus involved in each
share generation is different and is greater than 𝑚0, the size of share
will also be higher than the size of secret, which makes it a non-ideal
secret sharing scheme.

8.5.2. Elliptic curve ElGamal (EC–EG) scheme
The security of EC–EG scheme relies on elliptic curve discrete

logarithm problem (EC DLP). In EC–EG scheme [49], an elliptic curve
over finite field, 𝐹𝑝′ need to be selected and 𝑝′ should be a prime
number of length at least 160-bit in order to provide 80-bit security. In
EC–EG scheme, the plaintext is first mapped to a point on the elliptic
curve and the ciphertext is represented as two curve points. A point
on an elliptic curve consists of an x co-ordinate and a y co-ordinate.
But only x co-ordinates of each point and sign of the y co-ordinates
will be taken to form the ciphertext as it is possible to derive the y
co-ordinates from the elliptic curve equation. As a result, the ciphertext
size is approximately double that of the plaintext size, which will result
in storage overhead.

In EC–EG scheme [49], 𝑝′ of 163-bits is used. Encryption requires
one point addition and two scalar multiplications on 163-bit elliptic
curve. Double and add algorithm is usually used for scalar multiplica-
tion and it requires 𝑝′ doublings and 𝑝′∕2 additions. Thus the encryption
process demands on an average 495 (= 2.(163 + 82)) point doublings
and additions as 𝑝′ is a 163-bit prime number. Each point addition
and doubling operation involves approximately 5 modular multiplica-
tions [49]. So it is equivalent to 2450 (= 495 × 5) 163-bit modular
multiplications. Since the complexity of a 𝑛-bit modular multiplication
is 𝑂(𝑛2), the complexity of encryption of a plaintext is 𝑂(2450.(1632)).
Similarly, the decryption needs only one scalar multiplication and thus
the decryption complexity involves 1225 163-bit modular multiplica-
tions. Thus, the number of bit multiplications (BM) and number of bit
additions (BA) involved in the encryption and decryption of a plaintext
in this scheme can be mathematically expressed as,

𝐵𝑀𝐸𝑛𝑐 = 2450 ⋅ (𝑙𝑜𝑔2𝑝′)2 (35)

𝐵𝐴𝐸𝑛𝑐 = (𝑙𝑜𝑔2𝑝′) (36)

𝐵𝑀𝐷𝑒𝑐 = 1225 ⋅ (𝑙𝑜𝑔2𝑝′)2 (37)

The main problem with EC–EG scheme is that in order to retrieve
the plaintext 𝑠, mapping function need to be reversed. This reverse
mapping function is done using pollard-rho method [50]and equivalent
to solving the discrete logarithm problem (DLP) on elliptic curve. This
is a brute-force approach of finding a solution to the DLP and if 0 ≤
𝑠 ≤ 𝑇 , then the expected time to solve DLP is 𝑂(𝑇 1∕2) [49]. Hence the
decryption complexity depends on the plaintext size to be retrieved and
if the plaintext size is large, it cannot be recovered from elliptic curve
point due to the hardness of elliptic curve DLP.

8.5.3. Paillier scheme
The security of the Paillier scheme [14] relies on the decisional com-

posite residuosity assumption which in turn depends on the computa-
tional difficulty in integer factorization. The plaintexts are represented
as elements of 𝑍𝑞′ , where 𝑍𝑞′ denotes the set of integers modulo 𝑞′.
Ciphertexts are represented as an integer modulo 𝑞′2, where 𝑞′ is a
product of two large primes. This means number of bits required in
representing ciphertext is twice that of plaintext. In order to provide
80-bit security, 𝑞′ should be of 1024 bits, which also results in huge
data expansion.

The encryption process and decryption process in Paillier scheme
requires 1 exponentiation and 1 modular multiplication operation. Each
exponentiation needs 2⋅(𝑙𝑜𝑔2𝑦) modular multiplications, where 𝑦 is
the exponent. In Paillier scheme, 𝑦 ∈ 𝑍𝑞′ which implies (𝑙𝑜𝑔2𝑦) =
1024. Therefore, each exponentiation operation involves 2048 modular
multiplications since (𝑙𝑜𝑔2𝑦) = 1024 as 𝑦 ∈ 𝑍𝑞′ . So overall 2049 mod-
ular multiplications are involved in encryption as well as decryption
process. The number of bit multiplications (BM) involved in a modular
multiplication depends upon the modulus and is (2048)2 as modulus
is taken with respect to 𝑞′2. Thus, the number of BM involved in the
encryption and decryption of a plaintext in Paillier scheme can be
obtained as,

𝐵𝑀𝐸𝑛𝑐 = 2049 × (2048)2 (38)

𝐵𝑀𝐷𝑒𝑐 = 2049 × (2048)2 (39)

Journal of Information Security and Applications 60 (2021) 102869

14

Lakshmi V.S. et al.

8.5.4. Comparison
The comparison of the proposed secret sharing schemes with EC–

EG, Paillier and CRT based secret sharing schemes are discussed in this
section. Even though 𝑝 = 257 is sufficient for providing 80-bit security,
the computational complexity of proposed schemes is compared using
𝑝 = 4091 since this value is used for SD image decomposition. In
order to find the computational complexity of CRT based secret sharing
scheme, 𝑚0 = 4091 is used since the secret size depends on 𝑚0.
The computational complexity per image pixel and storage overhead
of proposed MSSS and MRSS scheme for providing 80-bit security is
compared with that of EC–EG, Paillier and CRT based secret sharing
scheme in Table 8.

In the table, encryption, decryption, share generation and share
reconstruction are abbreviated as Enc, Dec, Share Gen and Share Rec
respectively. Since 𝑝 = 4091 in proposed scheme and CRT based secret
sharing scheme, each image pixel can be represented using 12 bits.
Whereas in Paillier scheme, each image pixel is represented as an inte-
ger modulo 𝑞′, where 𝑞′ is a prime number with 1024 bits for providing
80 bit security. On the other hand, each image pixel is represented as
a point on the elliptic curve over 𝐹𝑝′ , where 𝑝′ is a prime number with
163 bits for providing 80 bit security. Thus from Table 8, it is clear
that the computational complexity of the proposed schemes and CRT
based secret sharing is very less compared to EC–EG as well as Paillier
scheme for comparable security levels. But, it should be noted that the
computational complexity of CRT based scheme will be higher than
proposed schemes since CRT scheme utilizes higher modulus values
(𝑛 + 1 prime numbers, 𝑚0 < 𝑚1 < 𝑚2 < ⋯ < 𝑚𝑛) than 𝑝 for share
generation and secret reconstruction, whereas proposed schemes use
same prime number, 𝑝 for all tasks. Also, the storage overhead is double
for EC–EG, Paillier and (2,2) MSSS scheme, whereas it is 1 for (2,2)
MRSS scheme and more than double for CRT based scheme as the
share size may be greater than the secret size. However, in EC–EG and
Paillier scheme, each image pixel consisting of 8 bits is expanded to
326 and 2048 bits as the ciphertext is double the plaintext size, which
will result in huge storage overhead; whereas it is expanded to only
24 bits and slightly higher in proposed MSSS scheme and CRT based
scheme respectively. Even though the computational complexity and
storage overhead of CRT based secret sharing scheme is almost same as
that of proposed schemes, it is difficult to construct CRT based schemes
since it requires a series of pairwise coprime integers satisfying some
stringent conditions. The major advantage of secret sharing schemes
compared to other additive homomorphic encryption schemes is that it
offers data integrity and data availability. The proposed schemes can
easily be extended to take advantage of original SSS by storing more
number of shares than the threshold at the expense of increased storage
overhead.

9. Conclusion

Shamir secret sharing (SSS) scheme is an efficient candidate for
privacy preserving data processing due to its inherent additive homo-
morphism. In this paper, first a modified Shamir secret sharing (MSSS)
scheme is proposed that resists collusion attack, which is a major
drawback of original SSS scheme. This is achieved through blinding
the secret before share generation. The random numbers used to blind
the secrets are generated through a design based on LFSRs so that
it neither spoils the homomorphic property of SSS nor destroys the
randomness and security properties offered by LFSR keystream after
share processing. The proposed MSSS scheme significantly reduces the
storage overhead as it offers adequate security even with two shares.
The data availability can be ensured by (𝑡, 𝑛) MSSS scheme as long as
any 𝑡 out of 𝑛 servers are available. But as the size of each share is
same as that of secret, the storage overhead of MSSS scheme is high
while extending it to provide data availability. Therefore a modified
ramp secret sharing (MRSS) scheme is also proposed to reduce the
storage overhead. The proposed (𝑡, 𝑛) schemes can recover secret and

identify the corrupted servers even when the shares in atmost (𝑛− 𝑡−1)
servers are corrupted. An algorithm for image decomposition with Haar
wavelet using proposed schemes is also presented. Through mathemat-
ical cryptanaysis and statistical analysis, it is proved that the proposed
schemes are secure. The quantitative and qualitative analysis of sim-
ulation results showed that the shared domain processing gives same
accuracy as that of plaintext domain. These attractive features make
these schemes an ideal candidate for secure domain cloud applications.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A

Theorem 1. The LFSR keystreams satisfy additivity and homogeneity
properties.

Proof. (1) Additivity property –The addition of the LFSR keystreams
will produce a new keystream, generated from an initial state which
corresponds to the sum of initial states of individual keystreams.

Let 𝑘(𝑧) = 𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 +⋯ + 𝑘𝐿−1𝑧𝐿−1 represent the polynomial
version of LFSR initial state and 𝑞(𝑧) = 𝑞0+𝑞1𝑧+𝑞2𝑧2+⋯+𝑞𝐿𝑧𝐿 indicate
the LFSR feedback polynomial, where 𝑘𝑖, 𝑞𝑖 ∈ 𝐹𝑝. Then the LFSR output
keystream sequence, 𝑟(𝑧) with period 𝑝𝐿 − 1 can be written as,

𝑟(𝑧) = ℎ(𝑧)∕𝑞(𝑧), 𝑤ℎ𝑒𝑟𝑒 ℎ(𝑧) =
𝐿−1
∑

𝑖=0

(𝑖
∑

𝑗=0
𝑘𝑗𝑞𝑖−𝑗

)

𝑧𝑖 (A.1)

Suppose 𝑘1(𝑧) = 𝑘10 + 𝑘11𝑧 + 𝑘12𝑧2 + ⋯ + 𝑘1𝐿−1𝑧𝐿−1 and 𝑘2(𝑧) =
𝑘20+𝑘21𝑧+𝑘22𝑧2+⋯+𝑘2𝐿−1𝑧𝐿−1 are two distinct LFSR initial states with
the same feedback polynomial 𝑞(𝑧), then the output sequences, 𝑟1(𝑧)
and 𝑟2(𝑧) of LFSR corresponding to 𝑘1(𝑧) and 𝑘2(𝑧) can be represented
as,

𝑟1(𝑧) =

[𝐿−1
∑

𝑖=0

(𝑖
∑

𝑗=0
𝑘1𝑗𝑞𝑖−𝑗

)

𝑧𝑖
]

∕𝑞(𝑧)

𝑟2(𝑧) =

[𝐿−1
∑

𝑖=0

(𝑖
∑

𝑗=0
𝑘2𝑗𝑞𝑖−𝑗

)

𝑧𝑖
]

∕𝑞(𝑧) (A.2)

Then,

𝑟1(𝑧) + 𝑟2(𝑧) =

[𝐿−1
∑

𝑖=0

(𝑖
∑

𝑗=0
(𝑘1𝑗 + 𝑘2𝑗)𝑞𝑖−𝑗

)

𝑧𝑖
]

∕𝑞(𝑧)

=

[𝐿−1
∑

𝑖=0

(𝑖
∑

𝑗=0
𝑘3𝑗𝑞𝑖−𝑗

)

𝑧𝑖
]

∕𝑞(𝑧)

= 𝑟3(𝑧) (A.3)

where 𝑟3(𝑧) is the keystream obtained using the LFSR initial state,
𝑘3(𝑧) = 𝑘1(𝑧) + 𝑘2(𝑧). □

Proof. (2) Homogeneity property –The scalar multiplication of an LFSR
keystream will produce a new keystream, generated from an initial
state which corresponds to the scalar multiple of the initial state of
original keystream.

Let 𝑟(𝑧) denote the keystream generated using initial key, 𝑘(𝑧). Then
𝑟′(𝑧) = 𝛼 ⋅ 𝑟(𝑧) is the keystream obtained using 𝑘𝛼(𝑧) = 𝛼 ⋅ 𝑘(𝑧), where
𝛼 ∈ 𝐹𝑝.

𝛼 ⋅ 𝑟(𝑧) = 𝛼 ⋅

[𝐿−1
∑

𝑖=0

(𝑖
∑

𝑗=0
𝑘𝑗𝑞𝑖−𝑗

)

𝑧𝑖
]

∕𝑞(𝑧)

=

[𝐿−1
∑

𝑖=0

(𝑖
∑

𝑗=0
𝛼 ⋅ 𝑘𝑗𝑞𝑖−𝑗

)

𝑧𝑖
]

∕𝑞(𝑧)

Journal of Information Security and Applications 60 (2021) 102869

15

Lakshmi V.S. et al.

Table 8
Comparison of the proposed (2, 2) MSSS scheme with EC–EG and Paillier scheme for 80-bit security level.

Parameters EC–EG [49] Paillier [15] (2, 2) MSSS & MRSS Scheme,
CRT based Secret Sharing [37]

Computational
Complexity

Enc - 226 BM + 28 BA
Dec - 225 BM

Enc - 233 BM
Dec - 233 BM

Share Gen - 29 BM + 26 BA
Secret Rec - 210 BM + 25 BA

Storage 2 2 2 (MSSS) 1 (MRSS)
Overhead > 2 (CRT based Secret sharing)

=

[𝐿−1
∑

𝑖=0

(𝑖
∑

𝑗=0
𝑘𝛼𝑗𝑞𝑖−𝑗

)

𝑧𝑖
]

∕𝑞(𝑧)

= 𝑟′(𝑧) □ (A.4)

Appendix B

Theorem 2. The set of 𝐿 initial states of an LFSR of length 𝐿 de-
rived through cyclic shift of the initial secret key 𝑘(𝑧) will be linearly
independent, if gcd (𝑘(𝑧), 𝑧𝐿 − 1) forms a polynomial of zero degree.

Proof. Let the LFSR initial state (secret key) be denoted as 𝑘 =
(𝑘0, 𝑘1, 𝑘2,… , 𝑘𝐿−1), where 𝑘𝑖 ∈ 𝐹𝑝. Also define a shifting operator,
𝐷 ∶ 𝑊 ↦ 𝑊 as,

𝐷(𝑘0, 𝑘1, 𝑘2,… , 𝑘𝐿−1) = (𝑘𝐿−1, 𝑘0, 𝑘1,… , 𝑘𝐿−2) (B.1)

Now, arranging the secret key, 𝑘 and its corresponding 𝐿 − 1 shifted
versions as the rows of the matrix, 𝐾 ′, an 𝐿 × 𝐿 circulant matrix can
be formed as shown in Eq. (B.2).

𝐾 ′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑘
𝐷𝑘
⋮

𝐷𝐿−2𝑘
𝐷𝐿−1𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑘0 𝑘1 ⋯ 𝑘𝐿−2 𝑘𝐿−1
𝑘𝐿−1 𝑘0 ⋯ 𝑘𝐿−3 𝑘𝐿−2
⋮ ⋮ ⋱ ⋮ ⋮
𝑘2 𝑘3 ⋯ 𝑘0 𝑘1
𝑘1 𝑘2 ⋯ 𝑘𝐿−1 𝑘0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(B.2)

If the circulant matrix, 𝐾 ′ is of full rank, then every initial state of LFSR
generated by cyclically shifting the coefficients of 𝑘(𝑧) will be linearly
independent.

Let the entries of a circulant matrix 𝑇 are,

𝑇𝑖𝑗 =
{

1, 𝑗 − 𝑖 ≡ 1(𝑚𝑜𝑑 𝐿)
0, 𝑗 − 𝑖 ≢ 1(𝑚𝑜𝑑 𝐿)

(B.3)

Now, the 𝐿 × 𝐿 circulant matrix 𝐾 ′ which correspond to the secret
key, 𝑘 can be represented as 𝐾 ′ =

∑𝐿−1
𝑖=0 𝑘𝑖𝑇 𝑖 where 𝑇 0 = 𝐼 is an

𝐿×𝐿 identity matrix and 𝑇 1 is obtained through the cyclic shift of each
row of 𝑇 0 using the operator 𝐷. Then, there exists a circulant matrix
𝐶 =

∑𝐿−1
𝑖=0 𝑐𝑖𝑇 𝑖, where 𝑐𝑖 ∈ 𝐹𝑝 such that 𝐾 ′.𝐶 = 𝐼 , if 𝐾 ′ is invertible

over 𝐹𝑝.
If 𝑘(𝑧) =

∑𝐿−1
𝑖=0 𝑘𝑖𝑧𝑖 is the polynomial representation of circulant

matrix, 𝐾 ′, then computing the inverse of 𝐾 ′ is equivalent to finding a
polynomial 𝑐(𝑧) = ∑𝐿−1

𝑖=0 𝑐𝑖𝑧𝑖 in 𝐹𝑝[𝑧] such that,

𝑘(𝑧).𝑐(𝑧) ≡ 1(𝑚𝑜𝑑(𝑧𝐿 − 1)) (B.4)

The congruence relationship in Eq. (B.4) is due to the equality 𝑇 𝐿 = 𝐼 .
With the help of Extended Euclidean algorithm, Eq. (B.4) can also be
written as,

𝑘(𝑧).𝑐(𝑧) + 𝑛(𝑧).(𝑧𝐿 − 1) = 1 (B.5)

Thus from Eq. (B.5), it is clear that the circulant matrix, 𝐾 ′ of size 𝐿×𝐿
will have full rank if gcd (𝑘(𝑧), (𝑧𝐿 − 1)) = 𝑢, where 𝑢 is a non-zero
integer in 𝐹𝑝. In general, the rank of circulant matrix is 𝐿 − 𝑔, if gcd
(𝑘(𝑧), (𝑧𝐿 −1)) is having a degree 𝑔. Hence, if 𝑔 = 0, then all rows of 𝐾 ′

are linearly independent and it will be a full rank matrix. □

References

[1] Ali M, Khan SU, Vasilakos AV. Security in cloud computing: Opportunities and
challenges. Inf Sci 2015;305:357–83.

[2] Singh S, Jeong Y-S, Park JH. A survey on cloud computing security: Issues,
threats, and solutions. J Netw Comput Appl 2016;75:200–22.

[3] Mthunzi SN, Benkhelifa E, Bosakowski T, Guegan CG, Barhamgi M. Cloud
computing security taxonomy: From an atomistic to a holistic view. Future Gener
Comput Syst 2020;107:620–44.

[4] Dimakis AG, Godfrey PB, Wu Y, Wainwright MJ, Ramchandran K. Net-
work coding for distributed storage systems. IEEE Trans Inform Theory
2010;56(9):4539–51.

[5] Rodrigues R, Liskov B. High availability in dhts: Erasure coding vs. replication.
In: International workshop on peer-to-peer systems. Springer; 2005, p. 226–39.

[6] Lakshmi VS, Deepthi PP. A secure regenerating code-based cloud storage with
efficient integrity verification. Int J Commun Syst 2019;32(9):e3948.

[7] Liu X, Deng RH, Yang Y, Tran HN, Zhong S. Hybrid privacy-preserving clinical
decision support system in fog–cloud computing. Future Gener Comput Syst
2018;78:825–37.

[8] Wang X, Bai L, Yang Q, Wang L, Jiang F. A dual privacy-preservation scheme
for cloud-based ehealth systems. J Inf Secur Appl 2019;47:132–8.

[9] Zhang C, Zhu L, Xu C, Lu R. Ppdp: An efficient and privacy-preserving disease
prediction scheme in cloud-based e-healthcare system. Future Gener Comput Syst
2018;79:16–25.

[10] Liang P, Zhang L, Kang L, Ren J. Privacy-preserving decentralized abe for
secure sharing of personal health records in cloud storage. J Inf Secur Appl
2019;47:258–66.

[11] Bouslimi D, Coatrieux G, Cozic M, Roux C. A joint encryption/watermarking
system for verifying the reliability of medical images. IEEE Trans Inf Technol
Biomed 2012;16(5):891–9.

[12] Alloghani M, Alani MM, Al-Jumeily D, Baker T, Mustafina J, Hussain A, et
al. A systematic review on the status and progress of homomorphic encryption
technologies. J Inf Secur Appl 2019;48:102362.

[13] Dossogne J, Lafitte F. Blinded additively homomorphic encryption schemes for
self-tallying voting. J Inf Secur Appl 2015;22:40–53.

[14] Paillier P. Public-key cryptosystems based on composite degree residuosity
classes. In: Proceedings of the EUROCRYPT, vol. 99. Springer; 1999, p. 223–38.

[15] Zheng P, Huang J. Discrete wavelet transform and data expansion reduction in
homomorphic encrypted domain. IEEE Trans Image Process 2013;22(6):2455–68.

[16] Jiang L, Xu C, Wang X, Luo B, Wang H. Secure outsourcing sift: Efficient and
privacy-preserving image feature extraction in the encrypted domain. IEEE Trans
Dependable Secure Comput.

[17] Shamir A. How to share a secret. Commun ACM 1979;22(11):612–3.
[18] Benaloh JC. Secret sharing homomorphisms: Keeping shares of a secret secret. In:

Conference on the theory and application of cryptographic techniques. Springer;
1986, p. 251–60.

[19] Blakley GR. Safeguarding cryptographic keys. In: International workshop on
managing requirements knowledge. IEEE; 1979, p. 313–8.

[20] Van Dijk M. On the information rate of perfect secret sharing schemes. Des Codes
Cryptogr 1995;6(2):143–69.

[21] Brickell EF, Davenport DM. On the classification of ideal secret sharing schemes.
J Cryptol 1991;4(2):123–34.

[22] Mignotte M. How to share a secret. In: Workshop on cryptography. Springer;
1982, p. 371–5.

[23] Asmuth C, Bloom J. A modular approach to key safeguarding. IEEE Trans Inf
Theory 1983;29(2):208–10.

[24] Goldreich O, Ron D, Sudan M. Chinese remaindering with errors. In: Proceedings
of the thirty-first annual ACM symposium on theory of computing. 1999. p.
225–34.

[25] Quisquater M, Preneel B, Vandewalle J. On the security of the threshold scheme
based on the chinese remainder theorem. In: International workshop on public
key cryptography. Springer; 2002, p. 199–210.

[26] Krawczyk H. Secret sharing made short. In: Annual international cryptology
conference. Springer; 1993, p. 136–46.

[27] Goryczka S, Xiong L. A comprehensive comparison of multiparty secure
additions with differential privacy. IEEE Trans Dependable Secure Comput
2015;14(5):463–77.

[28] Bogdanov D, Laur S, Willemson J. Sharemind: A framework for fast privacy-
preserving computations. In: European symposium on research in computer
security. Springer; 2008, p. 192–206.

http://refhub.elsevier.com/S2214-2126(21)00098-3/sb1
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb1
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb1
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb2
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb2
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb2
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb3
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb3
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb3
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb3
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb3
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb4
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb4
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb4
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb4
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb4
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb5
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb5
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb5
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb6
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb6
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb6
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb7
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb7
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb7
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb7
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb7
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb8
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb8
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb8
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb9
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb9
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb9
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb9
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb9
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb10
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb10
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb10
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb10
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb10
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb11
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb11
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb11
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb11
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb11
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb12
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb12
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb12
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb12
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb12
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb13
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb13
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb13
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb14
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb14
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb14
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb15
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb15
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb15
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb17
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb18
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb18
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb18
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb18
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb18
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb19
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb19
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb19
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb20
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb20
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb20
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb21
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb21
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb21
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb22
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb22
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb22
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb23
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb23
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb23
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb25
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb25
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb25
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb25
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb25
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb26
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb26
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb26
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb27
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb27
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb27
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb27
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb27
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb28
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb28
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb28
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb28
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb28

Journal of Information Security and Applications 60 (2021) 102869

16

Lakshmi V.S. et al.

[29] Bogdanov D, Niitsoo M, Toft T, Willemson J. High-performance secure
multi-party computation for data mining applications. Int J Inf Secur
2012;11(6):403–18.

[30] Bogdanov D, Talviste R, Willemson J. Deploying secure multi-party computation
for financial data analysis. In: International conference on financial cryptography
and data security. Springer; 2012, p. 57–64.

[31] Burkhart M, Strasser M, Many D, Dimitropoulos X. Sepia: Privacy-preserving
aggregation of multi-domain network events and statistics. Network 1(101101).

[32] Dolev S, Gupta P, Li Y, Mehrotra S, Sharma S. Privacy-preserving secret shared
computations using mapreduce. IEEE Trans Dependable Secure Comput.

[33] SaghaianNejadEsfahani SM, Luo Y, Cheung S-cS. Privacy protected image de-
noising with secret shares. In: 19th IEEE international conference onimage
processing. IEEE; 2012, p. 253–6.

[34] Mohanty M, Ooi WT, Atrey PK. Scale me, crop me, knowme not: Supporting
scaling and cropping in secret image sharing. In: IEEE international conference
on multimedia and expo. IEEE; 2013, p. 1–6.

[35] Lathey A, Atrey PK. Image enhancement in encrypted domain over cloud. ACM
Trans Multimedia Comput Commun Appl 2015;11(3):38.

[36] Singh P, Agarwal N, Raman B. Secure data deduplication using secret sharing
schemes over cloud. Future Gener Comput Syst 2018;88:156–67.

[37] Singh P, Raman B. Reversible data hiding for rightful ownership assertion
of images in encrypted domain over cloud. AEU-Int J Electron Commun
2017;76:18–35.

[38] Xiang Y, Xiao D, Wang H, Li X. A secure image tampering detection and
self-recovery scheme using pob number system over cloud. Signal Process
2019;162:282–95.

[39] Dautrich JL, Ravishankar CV. Security limitations of using secret sharing for
data outsourcing. In: IFIP annual conference on data and applications security
and privacy. Springer; 2012, p. 145–60.

[40] Menezes A, Van Oorschot P, Vanstone S. Handbook of applied cryptography.
CRC Press; 1996.

[41] Gong X, Hu P, Shum KW, Sung CW. A zigzag-decodable ramp secret sharing
scheme. IEEE Trans Inf Forensics Secur 2018;13(8):1906–16.

[42] McEliece RJ, Sarwate DV. On sharing secrets and reed-solomon codes. Commun
ACM 1981;24(9):583–4.

[43] MacWilliams FJ. Orthogonal circulant matrices over finite fields, and how to find
them. J Combin Theory Ser A 1971;10(1):1–17.

[44] Summers D. Harvard whole brain atlas: www. med. harvard. edu/aanlib/home.
html. J Neurol Neurosurg Psychiatry 2003;74(3):288.

[45] Wu Y, Noonan JP, Agaian S. Npcr and uaci randomness tests for image
encryption, Cyber journals: multidisciplinary journals in science and technology.
J Sel Areas Telecommun 2011;1(2):31–8.

[46] Blum RS, Liu Z. Multi-sensor image fusion and its applications. CRC Press 2005.
[47] Wang Z, Bovik AC. A universal image quality index. IEEE Signal Process Lett

2002;9(3):81–4.
[48] Li L, Abd El-Latif AA, Niu X. Elliptic curve elgamal based homomorphic image

encryption scheme for sharing secret images. Signal Process 2012;92(4):1069–78.
[49] Mykletun E, Girao J, Westhoff D. Public key based cryptoschemes for data

concealment in wireless sensor networks. In: IEEE international conference on
communications, vol. 5. IEEE; 2006, p. 2288–95.

[50] Pollard JM. Monte carlo methods for index computation (mod p). Math Comput
1978;32(143):918–24.

http://refhub.elsevier.com/S2214-2126(21)00098-3/sb29
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb29
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb29
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb29
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb29
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb30
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb30
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb30
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb30
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb30
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb33
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb33
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb33
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb33
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb33
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb34
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb34
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb34
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb34
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb34
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb35
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb35
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb35
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb36
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb36
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb36
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb37
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb37
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb37
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb37
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb37
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb38
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb38
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb38
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb38
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb38
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb39
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb39
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb39
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb39
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb39
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb40
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb40
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb40
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb41
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb41
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb41
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb42
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb42
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb42
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb43
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb43
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb43
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb44
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb44
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb44
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb45
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb45
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb45
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb45
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb45
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb46
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb47
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb47
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb47
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb48
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb48
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb48
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb49
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb49
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb49
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb49
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb49
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb50
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb50
http://refhub.elsevier.com/S2214-2126(21)00098-3/sb50

	Collusion resistant secret sharing scheme for secure data storage and processing over cloud
	Introduction
	Related works
	Motivation and contributions

	System model and adversary model
	System model
	Adversary model

	Proposed modified Shamir secret sharing scheme
	Original Shamir secret sharing scheme
	Share generation
	Secret reconstruction
	Homomorphic property

	Design of modified Shamir secret sharing scheme
	Design of random numbers
	Keyspace

	Proposed modified ramp secret sharing for reduced storage overhead
	Design of modified ramp secret sharing scheme

	Proposed scheme for integrity verification and data reconstruction
	Privacy preserving DWT computation based on proposed MSSS and MRSS scheme
	Share generation
	2D Haar DWT computation in SD
	Reconstruction of decomposed image
	Random image generation

	Security analysis
	Security against collusion of t-1 participants
	Known-plaintext Attack (KPA) during collusion of t participants
	Statistical attacks
	Histogram analysis
	Key sensitivity analysis
	Correlation analysis

	Performance analysis
	Qualitative analysis
	Quantitative analysis
	Storage overhead
	Computational complexity
	Comparison and discussions
	Secret sharing scheme based on CRT
	Elliptic curve ElGamal (EC–EG) scheme
	Paillier scheme
	Comparison

	Conclusion
	Declaration of competing interest
	Appendix A
	Appendix B
	References

